Math, asked by Anonymous, 2 days ago

Find the compound interest on Rs.64000 for per 1 year at the rate of 10% p.a. compounded quarterly.​

Answers

Answered by ItzzTwinklingStar
35

Given:

  • Principle = Rs.64000
  • Rate = 10%
  • Time = 1 years.

 \\

To Find:

  • Compound interest = ?

 \\

Formula used:

 \\\bigstar{\underline{\boxed{\bf{ \red{A= P\bigg[1 + \dfrac{ {R}}{100} \bigg]^{4n}}}}}}\\

\bigstar{\underline{\boxed{\bf \: \color{blue}{C.I = Amount - Principal}}}}\\

Where :

  • A = Amount
  • P = Principal
  • R = Rate
  • n = Time
  • C.I = Compound Interest

Solution:

 \\

calculating the amount:

 \\ \dashrightarrow {\sf { A = P \bigg( 1 + \dfrac{R}{400} \bigg)^{4n} }} \\  \\

\dashrightarrow {\sf { A = 64000 \bigg(1 + \dfrac{10}{400} \bigg)^{4 \times 1}  }} \\  \\

\dashrightarrow {\sf { A = 64000 \bigg(1 + \dfrac{10}{400} \bigg)^{4}   }} \\  \\

\dashrightarrow {\sf { A = 64000 \bigg(1 + \cancel\dfrac{10}{400} \bigg)^{4}  }} \\  \\

\dashrightarrow {\sf { A = 64000 \bigg(1 + \cancel\dfrac{5}{200} \bigg)^{4}   }} \\  \\

\dashrightarrow {\sf { A = 64000 \bigg(1 + \cancel\dfrac{2.5}{100} \bigg)^{4}   }} \\  \\

\dashrightarrow {\sf { A = 64000 \bigg(1.025 \bigg)^{4}    }} \\  \\

\dashrightarrow {\sf { A = 64000 \times 1.025 \times 1.025 \times 1.025 \times 1.025    }} \\  \\

\dashrightarrow {\sf { A = 64000 \times 1.103812890625}} \\  \\

\dashrightarrow {\sf { Amount = ₹ \; 70644.025      }} \\  \\

{\bigstar{\red{\underline {\boxed {\sf{Amount = ₹ \; 70644.025 }}}}}}\\\\

Hence, the amount is ₹ 70644.025

\\

★ compound interest

\\{\dashrightarrow{\sf{{C.I=A- P}}}}\\\\

{\dashrightarrow{\sf{{C.I=70644.025 - 64000}}}}\\\\

{\dashrightarrow{\sf{C.I=₹ \; 6644.025}}}\\\\

{\bigstar{\red{\underline {\boxed {\sf{C.I=₹ \; 6644.025 }}}}}}\\\\

Hence, the compound interest is ₹ 6644.025

Answered by ANTMAN22
5

To find:

\to The compound interest

Given:

  • Principle=64000rs
  • Time=1year

Solution:

Using formula:

\to \boxed{\mathsf{Compound \ interest=Principle(1+\frac{Rate \ of \ interest \ per \ annum}{100}) - Principle}}^ \mathsf{Time \ (Number \ of \ years)}

Using the formula of compund interest finding the compund interest,

\to \mathsf{64000(1+\frac{10}{100})  ^ \mathsf{1}-64000}  \mathsf{rs}\\\\\to =\mathsf{64000(\frac{11}{10} )-64000 rs}\\\\\to =\mathsf{70400-64000rs}\\\\\to = \mathsf{6400rs}

Answer:

The compound interest=\mathsf{6400rs}

Similar questions