Math, asked by susiladevi802, 9 days ago

find the compound interest on rupees 60000 at the rate of 10 percent per annum 3 half years when interest is compounded half yearly

Answers

Answered by Anonymous
55

Given :

  • Principal = Rs.60000
  • Rate = 10 %
  • Time = 1.5 year or 3 half years

\rule{200pt}{3pt}

To Find :

  • Compound Interest = ?

\rule{200pt}{3pt}

Solution :

Formula Used :

  • Compounded Half - Yearly :

\large{\pink{\bigstar}} \: \: {\underline{\boxed{\purple{\sf{ C.I = P \bigg\lgroup 1 + \dfrac{\dfrac{R}{2}}{100} \bigg\rgroup ^{2 \times T} - P }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Compound Interest :

 {\dashrightarrow{\qquad{\sf{ C.I = P \bigg\lgroup 1 + \dfrac{\dfrac{R}{2}}{100} \bigg\rgroup ^{ 2 \times T} - P }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 60000 \bigg\lgroup 1 + \dfrac{\cancel\dfrac{10}{2}}{100} \bigg\rgroup ^{ 2 \times 1.5} - 60000 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 60000 \bigg\lgroup 1 + \cancel\dfrac{5}{100} \bigg\rgroup ^{ 3} - 60000 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 60000 \bigg\lgroup 1 + 0.05 \bigg\rgroup ^{3} - 60000 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{C.I = 60000 \bigg\lgroup 1.05  \bigg\rgroup ^{3} - 60000 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 60000 \times 1.05 \times 1.05 \times 1.05 - 60000 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 60000 \times 1.157625 - 60000 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 69457.5 - 60000 }}}} \\ \\ \ {\qquad{\sf{ Compound \: Interest \: = {\color{green}{\pmb{\sf{ ₹ \: 9457.5(Approx.) }}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Therefore :

❝ Compound Interest on this amount for 3 half years at 10 % is 9457.5(Approx.) . ❞

{\blue{\rule{25pt}{1pt}{\pink{\rule{30pt}{3pt}{\red{\rule{100pt}{5pt}{\blue{\rule{25pt}{1pt}{\pink{\rule{30pt}{3pt}  }}}}}}}}}}

Answered by Anonymous
17

Given:-

  • Principal = ₹ 60000
  • Rate = 10%
  • n = 3 half year

To Find:-

  • When interest is compounded half yearly.

Solution:-

When interest is compounded half yearly.

then,

  • Rate = 10/2=5% conversion period.

A = P(1 +  \frac{R}{100} ) {n}^{}

 = 60000(1 +  \frac{5}{100} ) {}^{3}

 = 60000 \times  (\frac{105}{100} ) {}^{3}

= 60000 \times  \frac{105}{100}  \times  \frac{105}{100}  \times  \frac{105}{100}

 = 69457.5

compound \: interest \:  = \: amount \:  -  \: principal

compound \: interest \:  = 69457.5 - 60000

 = 9457.5

Hence,

  • 9457.5 interest is compounded half yearly
Similar questions