Math, asked by ceciliadps2009, 11 months ago

find the compound interest plz​

Attachments:

Answers

Answered by AshSo
1

Answer:

416RS

Step-by-step explanation:

P=2500rs

n=2yrs

r=8%

A=P(1+r/100)^2

=2500(100+8/100)^2

=2500×108/100×108/100

=2916Rs

CI=A-P

=2916-2500

=416RS

Answered by Anonymous
265

Answer:

\begin{gathered}\huge{\textbf{\textrm{\underline{\underline{\color{green}{Question:}}}}}}\end{gathered}

  • ● Find the compound Interest on Rs.2500 for 2 years at 8% per annumn compounded annually.

\begin{gathered}\huge{\textbf{\textrm{\underline{\underline{\color{green}{Solution:}}}}}}\end{gathered}

\begin{gathered} \large{\textsf{\textbf{\underline{\underline{\color{brown}{Given:}}}}}}\end{gathered}

  • ● Principle = Rs.2500
  • ● Rate of Interest = 8%
  • ● Time = 2 years

\begin{gathered} \large{\textsf{\textbf{\underline{\underline{\color{brown}{To Find:}}}}}}\end{gathered}

  • ● Compound Interest

\begin{gathered} \large{\textsf{\textbf{\underline{\underline{\color{brown}{Using Formula:}}}}}}\end{gathered}

{\large\dag}{\underline{\sf{\boxed{\sf{Amount = P \bigg \{ 1 + \dfrac{R }{100}  \bigg\}^{n}}}}}}

\dag{\underline{\boxed{\sf{Compound \: Interest ={Amount- Principle }}}}}

\begin{gathered} \large{\textsf{\textbf{\underline{\underline{\color{brown}{Solution:}}}}}}\end{gathered}

\bigstar \:{\underline{\pmb{\frak{\red{Here}}}}}

  • ● For finding Compound Interest, firstly we need to find the Amount.

\bigstar \: {\underline{\pmb{\frak{\red{Firstly \: Finding \: the \: Amount}}}}}

 \quad{: \implies{\sf{Amount = \bf{P \bigg( 1 + \dfrac{R }{100}  \bigg)^{n}}}}}

  • Substituting the values

 \quad{: \implies{\sf{Amount = \bf{2500 \bigg(1 + \dfrac{8}{100}  \bigg)^{2}}}}}

 \quad{: \implies{\sf{Amount = \bf{2500 \bigg(1 \times 100+ \dfrac{8}{100}  \bigg)^{2}}}}}

 \quad{: \implies{\sf{Amount = \bf{2500 \bigg(\dfrac{100 + 8}{100}  \bigg)^{2}}}}}

 \quad{: \implies{\sf{Amount = \bf{2500 \bigg(\dfrac{108}{100}  \bigg)^{2}}}}}

 \quad{: \implies{\sf{Amount = \bf{2500 \bigg({\cancel\dfrac{108}{100}} \bigg)^{2}}}}}

 \quad{: \implies{\sf{Amount = \bf{2500 \bigg(\dfrac{27}{25}  \bigg)^{2}}}}}

 \quad{: \implies{\sf{Amount = \bf{2500 \bigg(\dfrac{27}{25} \times  \dfrac{27}{25} \bigg)}}}}

 \quad{: \implies{\sf{Amount = \bf{2500 \bigg(\dfrac{729}{625}  \bigg)}}}}

 \quad{: \implies{\sf{Amount = \bf{2500 \times \dfrac{729}{625}}}}}

 \quad{: \implies{\sf{Amount = \bf{{\cancel{2500}} \times \dfrac{729}{\cancel{625}}}}}}

 \quad{: \implies{\sf{Amount = \bf{4 \times 729}}}}

 \quad{: \implies{\sf{Amount = \bf{2916}}}}

\begin{gathered} \dag{\overline{\underline{\boxed{\bf{\color{red}{Amount = \bf{2916}}}}}}}\end{gathered}

  • ● The Amount is Rs.2916

\bigstar \: {\underline{\pmb{\frak{\red{Now,Finding \:  the  \: Compound  \: Interest }}}}}

 \quad{:  \implies{\sf{Compound \: Interest = \bf{Amount- Principle }}}}

  • Substituting the values

 \quad{:  \implies{\sf{Compound \: Interest = \bf{Amount- Principle }}}}

 \quad{:  \implies{\sf{Compound \: Interest = \bf{2916 -  2500 }}}}

 \quad{:  \implies{\sf{Compound \: Interest = \bf{416}}}}

\begin{gathered} \dag{\overline{\underline{\boxed{\bf{\color{red}{Compound \: Interest = 416}}}}}}\end{gathered}

  • ● Henceforth,The Compound Interest is Rs.416.

\begin{gathered} \large{\textsf{\textbf{\underline{\underline{\color{brown}{Learn \ More:}}}}}}\end{gathered}

\begin{gathered} \dag \:  \underline{\bf{More  \: Useful \:  Formula}}\\  {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\  \\ \dashrightarrow \sf{ P=Amount - Interest }\\  \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\    \\ \dashrightarrow  \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\  \\  \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}

Similar questions