Math, asked by yugendeiran, 1 year ago

find the compound interestate on rupees 16000for one year at 20% per annum, the interest being compounded quarterly

Answers

Answered by lucky308
1
S.I.=1600 *1*20
2
3200

yugendeiran: wrong answer mad answer right pannight polaaa
Answered by BloomingBud
7

 Hi \:  \: !!! \\  \\ Here \:  \: is \:  \: your \:  \: answer, \\  \\ Given :- \\ Principal(P) = Rs.16000 \\ Rate \:  \: of \:  \: interest (R)\:  = 20\% \: p.a. \\ \\ (R)\% \:  per \:  \: quarterly =  \frac{20}{4}  = 5\% \\  \\ Time(n) = 1 \: year \\ 1 \: year =( 1 \times 4)= 4 \: quarters \\  \\  \\ C.I = P[ \:  {(1 +  \frac{R}{100} )}^{n} - 1  \: ]  \\  \\   \:  \:  \:  \:  \:  \:  \:  = 16000 \: [ \:  {(1 +  \frac{5}{100} )}^{4} - 1  \: ]  \\  \\  \:  \:  \:  \:  \:  \:  \:  = 16000 \: [ \:  {(1 +  \frac{1}{20} )}^{4} - 1  \: ]  \\  \\ \:  \:  \:  \:  \:  \:    = 16000 \: [ \:  {(   \frac{20 + 1}{20} )}^{4} - 1  \: ]  \\  \\  \:  \:  \:  \:  \:  \:  = 16000 \: [ \:  {( \frac{21}{20} )}^{4} - 1  \: ]  \\  \\  \:  \:  \:  \:  \:  \:  = 16000 \: [ \:   \frac{194481}{160000}  - 1  \: ]  \\  \\   \:  \:  \:  \:  \:  \: = 16000 \: [ \:   \frac{194481 - 160000}{160000}    \: ]  \\  \\   \:  \:  \:  \:  \:  \: = 16000 \: [ \:   \frac{34481}{160000}    \: ]  \\  \\   \:  \:  \:  \:  \:  \: = 16000 \times  \frac{34481}{160000}  \\  \\ \:  \:  \:  \:  \:  \:    = 3448.1 \\  \\ \\  C.I = Rs.3448.1 \\  \\  \\ Hope \:  \: it \:  \: helps.
Similar questions