Math, asked by Aryann7591, 10 months ago

Find the compound intrest on ₹8000 for 2years 3months at 10% P.A

Answers

Answered by Farhan5555
0

Step-by-step explanation:

P=₹8000

T=1/4year =1 for quarterly

R=10/4=25/10%

Amount=₹8000(41/40)

=₹8400

CI=₹8400-₹8000

=₹400

Answered by Cosmique
7

✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾

{\large\boxed{ \boxed{\frak{\red{question}}}}}

Find the Compound interest ( C. I.) on ₹ 8000 for 2 years 3 months at 10% per annum.

\large{\boxed{\boxed{ \frak{ \red{given \: information}}}}}

● Interest is compounded annually

● principal, P = ₹ 8000

● time, t = 2 years 3 months

\bf{time, \: t = 2 \frac{3}{12} } \: yrs = 2 \frac{1}{4} \:  years

● rate per annum, R = 10 %

\large{ \boxed{ \boxed{ \frak{ \red{pre \: knowledge \: required}}}}}

●When interest is compounded annually but time is in fraction, say here

 \tt \: 2 \frac{1}{4}  \: years \:

then,

\tt \: A =P {(1 +  \frac{R}{100}) }^{2}  \times (1 +  \frac{  \frac{1}{4}  \times R}{100} )

( A is representing amount )

ALSO,

●Amount ( A) = Principal (P) + C. I.

 \large{ \boxed{ \boxed{ \frak{ \red{solution}}}}}

Putting values in the formula

 \tt A  = 8000 {(1 +  \frac{10}{100} )}^{2}  \times (1 +  \frac{ \frac{1}{4} \times 10 }{100} ) \\  \\ \tt A = 8000 ({1 +  \frac{1}{10} })^{2}  \times (1 +  \frac{10}{4}  \times  \frac{1}{100} ) \\    \\ \tt  A = 8000 {( \frac{10 + 1}{10} )}^{2}  \times (1 +  \frac{1}{40}) \\  \\ \tt  A = 8000 \times  \frac{121}{100}  \times ( \frac{40 + 1}{40} ) \\  \\ \tt A = 80 \times 121 \times  \frac{41}{40}  \\  \\ \tt A = 2 \times 121 \times 41 \\  \\ \tt \: A = 9922

Hence, the amount will be ₹ 9922

NOW,

A = P + C. I.

C. I. = A - P

C. I. = 9922 - 8000

\boxed{ \tt \: C. I. = Rs 1922}

 \large{\boxed{ \boxed{ \frak{ \red{answer}}}}}

The compound interest will be ₹ 1922.

✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾

Similar questions