Math, asked by abildvrma7981, 10 months ago

find the compounded ratio of (a-b):(a+b),(a+b)2:(a2+b2)and (a4-b4):(a2-b2)2

Answers

Answered by satyavenkat2583
6

Step-by-step explanation:

the answer is given in the attachment

Attachments:
Answered by ashishks1912
22

Given that the three ratios are (a-b):(a+b), (a+b)^2:(a^2+b^2) and (a^4-b^4):(a^2-b^2)^2

To find :

The compounded ratio for the given three ratios

Solution :

The formula for Compounded ratio is :

Compounded ratio=\frac{product of antecedents}{product of consequents}

Compounded ratio=\frac{(a-b)\times (a+b)^2\times (a^4-b^4)}{(a+b)\times (a^2+b^2)\times (a^2-b^2)^2}

By using the formula :

\frac{1}{a^m}=a^{-m}

=\frac{(a-b)(a+b)^2.(a+b)^{-1}(a^4-b^4)}{(a^2+b^2)(a^2-b^2)^2}

By using the formula :

a^m.a^{-n}=a^{m-n}

=\frac{(a-b)(a+b)^{2-1}(a^4-b^4)}{(a^2+b^2)(a^2-b^2)^2}

=\frac{(a-b)(a+b)^{1}(a^2)^2-(b^2)^2}{(a^2+b^2)(a^2-b^2)^2}

=\frac{(a-b)(a+b)(a^2-b^2)(a^2+b^2)}{(a^2+b^2)(a^2-b^2)^2}

=\frac{(a^2-b^2)(a^2-b^2)}{(a^2+b^2)(a^2+b^2)^{-1}(a^2-b^2)^2}

=\frac{(a^2-b^2)^{1+1}}{(a^2+b^2)^{1-1}(a^2-b^2)^2}

By using the identity :

a^o=1

=\frac{(a^2-b^2)^{2}}{(a^2+b^2)^{0}(a^2-b^2)^2}

=\frac{(a^2-b^2)^{2}(a^2-b^2)^{-2}}{1}

=\frac{(a^2-b^2)^{2-2}}{1}

=\frac{(a^2-b^2)^{0}}{1}

=\frac{1}{1}

Therefore Compounded ratio=\frac{(a-b)\times (a+b)^2\times (a^4-b^4)}{(a+b)\times (a^2+b^2)\times (a^2-b^2)^2}=\frac{1}{1}

The compounded ratio for the given three ratios (a-b):(a+b), (a+b)^2:(a^2+b^2) and (a^4-b^4):(a^2-b^2)^2 is 1:1

Similar questions