Math, asked by ApprenticeIAS, 2 months ago

Find the condition for the line lx+my+n=0 to be a normal to the ellipse \mathrm{\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1}

Answers

Answered by EnchantedBoy
19

\bigstar\bf\underline{\underline{Given:-}}

  • \displaystyle{lx + my + n = 0}
  • \displaystyle{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1}

\bigstar\bf\underline{\underline{To \ find:-}}

  • The condition of line \displaystyle{lx + my + n = 0}

\bigstar\bf\underline{\underline{Answer:-}}

Let,

\displaystyle{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1}

\displaystyle{lx + my + n = 0}

\displaystyle{y = -\frac{l}{m}\times -\frac{n}{m}}

Equation of normal

\implies\displaystyle{y = mx\mp \frac{(a^2-b^2)m}{\sqrt{a^2 + b^2m^2}}}

\therefore\displaystyle{-\frac{1}{m} = m\mp \frac{(a^2-b^2)m}{\sqrt{a^2 + b^2(m^2)}} = -\frac{n}{m}}

\therefore\displaystyle{\frac{n}{m} =\mp \frac{(a^2 - b^2)\frac{l}{m}}{\sqrt{a^2 + b^2\times \frac{l^2}{m}}}}

\implies\displaystyle{\frac{\sqrt{a^2 m^2 + b^2 l^2}}{m} = \mp (a^2 + b^2)\frac{l}{n}}

\therefore\displaystyle{a^2 m^2 + b^2 l^2 = (a^2 - b^2)^2\frac{l^2 m^2}{n^2}}

\implies\displaystyle{\frac{a^2}{l^2} + \frac{b^2}{m^2} = \boxed{\bf\frac{(a^2 - b^2)^2}{n^2}}}

Hi akka...my self puneeth reddy 11th class from andhra pradesh ,UPSE aspirant as you...meeku in.sta unte...can you pls send me on in.sta...i have many doubtts on UPSE..will you plss..nenu in.sta lo msg cheyandi ani enduku adugutunna ante...ikkada msg cheyadam kudaradu akka..

My I'D @puneeth_ravan

Answered by Anonymous
5

Question:Find the condition for the line lx+my+n=0 is normal to the hyperbola a2x2−b2y2=1 .

As we know that

Equation of normal with slope p to a2x2−b2y2=1 is y=px±a2−b2p2p(a2+b2)

Given lx+my+n=0 is the normal

⟹y=−mlx−mn

⟹p=−ml,

And also

±a2−p2b2p(a2+b2)=−mn

Squaring on both sides

⟹p2(a2+b2)=m2n2(a2−pb2)

⟹m2l2(a2+b2)=m2n2(a2−m2l2b2)

⟹l2m2(a2+b2)=n2(a2m2−l2b2)

Hope it helps ❤️❤️❤️

Similar questions