Math, asked by ManishPandat, 1 year ago

Find the condition so that zeros of ax² + bx + c are in the ratio 3:4

Answers

Answered by waqarsd
0

let \: the \: roots \: of \: the \: equation \\  \\ a {x}^{2}  + bx + c = 0 \\  \\ be \:  \:  \alpha  \:  \: and \:  \:  \beta  \\  \\ wkt \\  \\  \alpha  +  \beta  =  -  \frac{b}{a}  \\  \\  \alpha  \beta  =  \frac{c}{a}  \\  \\ given \\  \\  \frac{ \alpha }{ \beta }  =  \frac{3}{4}  \\  \\ 4 \alpha  = 3 \beta  \\  \\  \alpha  =  \frac{3 \beta }{4}  \\  \\  \frac{3 \beta }{4}  +  \beta  =  -  \frac{b}{a}  \\  \\  \beta  =  -  \frac{4b}{7a}  \\  \\ ( \frac{3 \beta }{4} )( \beta ) =  \frac{c}{a}  \\  \\  { \beta }^{2}  =  \frac{4c}{3a}  \\  \\  \frac{16 {b}^{2} }{49 {a}^{2} }  =  \frac{4c}{3a}  \\  \\ 48 {b}^{2}  = 196ac \\  \\ 12 {b}^{2}  = 49ac \\  \\

hope it helps.

Answered by Anonymous
0

Step-by-step explanation:

\begin{lgathered}let \: the \: roots \: of \: the \: equation \\ \\ a {x}^{2} + bx + c = 0 \\ \\ be \: \: \alpha \: \: and \: \: \beta \\ \\ wkt \\ \\ \alpha + \beta = - \frac{b}{a} \\ \\ \alpha \beta = \frac{c}{a} \\ \\ given \\ \\ \frac{ \alpha }{ \beta } = \frac{3}{4} \\ \\ 4 \alpha = 3 \beta \\ \\ \alpha = \frac{3 \beta }{4} \\ \\ \frac{3 \beta }{4} + \beta = - \frac{b}{a} \\ \\ \beta = - \frac{4b}{7a} \\ \\ ( \frac{3 \beta }{4} )( \beta ) = \frac{c}{a} \\ \\ { \beta }^{2} = \frac{4c}{3a} \\ \\ \frac{16 {b}^{2} }{49 {a}^{2} } = \frac{4c}{3a} \\ \\ 48 {b}^{2} = 196ac \\ \\ 12 {b}^{2} = 49ac \\ \\\end{lgathered}

Similar questions