Math, asked by singhharry45321, 7 months ago

Find the condition that the pair of linear equations 2x + 3y = 15 and 2ax + (a + b)y = 7b + a has
infinitely many solutions.
24. Solve : ax +by = −a, bx + ay + b = 0
25. Solve : a(x + y) + b(x − y) = a
2 + b
2 − ab and a(x + y) − b(x − y) = a
2 + b
2 + ab

Answers

Answered by Swarup1998
5

1.

The given linear equations are

\quad\quad 2x+3y=15

\quad\quad 2ax+(a+b)y=7b+a

For infinitely many solutions, we must have the coefficient determinant being zero.

\quad D=0

\Rightarrow \left|\begin{array}{cc}2&3\\2a&a+b\end{array}\right|=0

\Rightarrow 2(a+b)-3(2a)=0

\Rightarrow 2a+2b-6a=0

\Rightarrow 4a=2b

\Rightarrow \boxed{\color{blue}{2a=b}}

This is the required condition.

2.

The given linear equations are

\quad\quad ax+by=-a\quad...(1)

\quad\quad bx+ay=-b\quad...(2)

Multiplying (1) by b and (2) by a, we get

\quad\quad abx+b^{2}y=-ab

\quad\quad abx+a^{2}y=-ab

On subtraction, we have

\quad (b^{2}-a^{2})y = 0

\Rightarrow y=0

Putting y=0 in (1), we get

\quad ax+0=-a

\Rightarrow x=-1

\therefore the required solution is

\quad\quad \boxed{\color{blue}{x=-1,\:y=0}}.

3.

The given linear equations are

\quad\quad a(x+y)+b(x-y)=a^{2}+b^{2}-ab

\quad\quad a(x+y)-b(x-y)=a^{2}+b^{2}+ab

On addition, we get

\quad 2a(x+y)=2(a^{2}+b^{2})

\Rightarrow ax+ay=a^{2}+b^{2}\quad...(1)

On subtraction, we get

\quad 2b(x-y)=-2ab

\Rightarrow x-y=-a\quad...(2)

Multiplying (1) by 1 and (2) by 2, we have

\quad\quad ax+ay=a^{2}+b^{2}

\quad\quad ax-ay=-a^{2}

On addition, we get

\quad 2ax=b^{2}

\Rightarrow x=\frac{b^{2}}{2a}

Putting x=\frac{b^{2}}{2a} in (2), we get

\quad \frac{b^{2}}{2a}-y=-a

\Rightarrow y=\frac{b^{2}}{2a}+a

\Rightarrow y=\frac{b^{2}+2a^{2}}{2a}

\therefore the required solution is

\quad \boxed{\color{blue}{x=\frac{b^{2}}{2a},\:y=\frac{b^{2}+2a^{2}}{2a}}}.

Similar questions