Math, asked by Novah, 3 days ago

Find the condition that the ratio between the roots of the equation ax² + bx + c = 0 may be m : n.

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that, the ratio between the roots of the equation ax² + bx + c = 0 may be m : n.

Let assume that

\rm \: m \alpha  \: and \: n \alpha  \: be \: the \: roots \: of \: equation \:  {ax}^{2} + bx + c = 0 \\

We know,

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}} \\

\rm \: m \alpha  + n \alpha  =   \: -  \: \dfrac{b}{a}  \\

\rm \: (m  + n )\alpha  =   \: -  \: \dfrac{b}{a}  \\

\rm\implies \:\alpha  =   \: -  \: \dfrac{b}{a(m + n)}  -  -  - (1) \\

Also, we know that

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}} \\

So,

\rm \: m \alpha  \times n \alpha  = \dfrac{c}{a}  \\

\rm \: mn {( \alpha )}^{2}   = \dfrac{c}{a}  \\

On substituting the value from equation (1) we get

\rm \: mn {\bigg( -  \frac{b}{a(m + n)} \bigg)}^{2}   = \dfrac{c}{a}  \\

\rm \: \dfrac{mn {b}^{2} }{ {a}^{2} {(m + n)}^{2}  }  = \dfrac{c}{a}  \\

\rm\implies \:mn {b}^{2} = ac {(m + n)}^{2}  \\

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions