Math, asked by PRANAVPRADEEP886, 9 months ago

Find the conjugate
(2+i^3)-(4-i^5)+(7+8i^2)

Answers

Answered by Anonymous
16

\red{\bold{\underline{\underline{QUESTION:-}}}}

To Find the conjugate of:-

(2+i^3)-(4-i^5)+(7+8i^2)

\huge\bigstar\huge\tt\underline\red{ᴀɴsᴡᴇʀ }\bigstar

 {i}^{2}  =  - 1 \: and \:  {i}^{3} \:  or \:  {i}^{5}  =  - i

(2 +  {i}^{3} ) - (4 -  {i}^{5} ) + (7 + 8 {i}^{2} )

(2 +  - i) - (4 - ( - i) + (7 - 8)

(2 - i) - (4 + i) - 1

2 - i - 4 - i - 1

 - 2 - 1 - 2i

 - 3 - 2i

 conjugate = 2i + 3

Here is your answer:

Hope it helps you..!!!

_________________

Thankyou:)

Similar questions