Math, asked by KHUSHI12345678910, 9 months ago

Find the conjugate and modulus of (bar) 9-i+ (bar) 6-i^3- (bar) 9-i^2

Answers

Answered by pulakmath007
14

SOLUTION

TO DETERMINE

The conjugate and modulus of

 \sf{ \overline{9 - i} + \overline{6 -  {i}^{3} } -  \overline{9 -  {i}^{2} }\: }

CONCEPT TO BE IMPLEMENTED

In study of complex numbers for a complex number z = a + ib

1. The conjugate of z is given by

 \sf{ \overline{z}  = \overline{a  +  ib}  = a - ib }

2. The modulus is given by

 \sf{ |z|   =  \sqrt{ {a}^{2} +  {b}^{2}  } \: }

3. If the complex number is purely real then conjugate and modulus of the number is the number itself

EVALUATION

First we simplify the given expression

 \sf{ \overline{9 - i} + \overline{6 -  {i}^{3} } -  \overline{9 -  {i}^{2} }\: }

 =  \sf{ \overline{9 - i} + \overline{6 -  i.{i}^{2} } -  \overline{9 - ( - 1) }\: }

 =  \sf{ \overline{9 - i} + \overline{6  +   i} -  \overline{10 }\: }

 \sf{ = 9 + i + 6 - i - 10 \:  \: }

 =  \sf{5 \: }

Which is a purely real

Hence

The conjugate of the given number = 5

The modulus of the given number = 5

FINAL ANSWER

 \sf{ Conjugate  \:  of \: \:  \overline{9 - i} + \overline{6 -  {i}^{3} } -  \overline{9 -  {i}^{2} }\: } \: is \:  \: 5

 \sf{ Modulus \: of \:  \:  \overline{9 - i} + \overline{6 -  {i}^{3} } -  \overline{9 -  {i}^{2} }\: } \: is \: 5

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Prove that

z1/z2 whole bar is equal to z1 bar/z2 bar.

Bar here means conjugate

https://brainly.in/question/16314493

Similar questions