Math, asked by fidhavs, 7 months ago

find the conjugate of 12+5i/4+3i​

Answers

Answered by kondalaprasad88
1

Step-by-step explanation:

To find the complex conjugate of -4 - 3i we change the sign of the imaginary part. Thus the complex conjugate of -4 - 3i is -4+3i.

mark as brainlist answer please

Answered by brainlyhero98
1

Answer:

conjugate \:  \implies \:  \frac{63}{25}  +  \frac{16}{25} i

Step-by-step explanation:

Step \: 1:\:We \:  should \: simplify \frac{12 + 5i}{4 + 3i}  by \: multiplying  \: \: (4 + 3i) \: on \: both \: numerator \: and \: denominator.\\\\Step\:2:\:We\:should\:find\:the\:conjugate\:of \:the\: obtained \:  complex \: number.

 \frac{12 + 5i}{4 + 3i}  =  \frac{(12 + 5i)(4 - 3i)}{(4 + 3i)(4 - 3i)} \\\\ \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=  \frac{48  - 36i + 20i + 15}{16  + 9}  \\  \\  =  \frac{63 - 16i}{25}  \\  \\  = \frac{63}{25}  -  \frac{16}{25} i  \\ \\ conjugate \:  \implies \:  \frac{63}{25}  +  \frac{16}{25} i

Similar questions