Math, asked by Alrajeev2005, 5 months ago

find the conjugate of i^37+i^100​

Answers

Answered by ITZBFF
177

\large\mathsf{Remember \: that \: {i}^{2} \: = \: -1 \: hence}

\mathsf\red{Value \: of \: {i}^{37} \: is}

 {i}^{37}    \: = \:  {i}^{36} \: . \:  \\ i  =  ({ {i}^{2}) }^{18} . \: i \\  =  {( - 1)}^{18} . \: i \\ = \: i

\mathsf\red{Value \: of \: {i}^{100} \: is}

 =  {i}^{100}  \\  =   {( {i}^{2} )}^{50}  \\  =  {( - 1)}^{50}  \\  = 1

\mathsf{So \: the \: value \: of \: {i}^{37} + {i}^{100} \: is}

\mathsf{= \: i + 1}

\mathsf{Conjugate \: of \: 1+i \: is \: }\mathsf\red{\: 1-i \: }

\mathsf{}

\large{\sf{\fcolorbox{black}{pink}{© \: ITZBFF}}}

Similar questions