Math, asked by serahbiju23owug4z, 1 month ago

Find the conjugate of the given complex number

Attachments:

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

z=\dfrac{i-1}{\cos\left(\dfrac{\pi}{3}\right)+i\,\sin\left(\dfrac{\pi}{3}\right)}

\implies\,z=\dfrac{i-1}{\dfrac{1}{2}+i\,\dfrac{\sqrt{3}}{2}}

\implies\,z=\dfrac{2(i-1)}{1+i\sqrt{3}}

\implies\,z=\dfrac{2(i-1)\left(1-i\sqrt{3}\right)}{\left(1+i\sqrt{3}\right)\left(1-i\sqrt{3}\right)}

\implies\,z=\dfrac{2(i-1)\left(1-i\sqrt{3}\right)}{1+(\sqrt{3})^2}

\implies\,z=\dfrac{2\left(i-1-i^2\sqrt{3}+i\sqrt{3}\right)}{1+3}

\implies\,z=\dfrac{2\left(i-1+\sqrt{3}+i\sqrt{3}\right)}{4}

\implies\,z=\dfrac{(-1+\sqrt{3})+(1+\sqrt{3})i}{2}

\implies\,z=\left(\dfrac{\sqrt{3}-1}{2}\right)+\left(\dfrac{\sqrt{3}+1}{2}\right)i

Now,

\implies\,\bar{z}=\left(\dfrac{\sqrt{3}-1}{2}\right)-\left(\dfrac{\sqrt{3}+1}{2}\right)i

Similar questions