Math, asked by shindesanjay5827, 5 months ago

find the constant term(term independent of x) in the expansion of (√x-3/x^2)^10
( \sqrt{x}  - 3 \div  {x}^{2} ) ^{10}

Answers

Answered by senboni123456
0

Step-by-step explanation:

Given, expression

( \sqrt{x}  -  \frac{3}{ {x}^{2} } )^{10}  \\

Let the r th term be the term independent of x

so,

t _{r + 1} =    \: ^{10}c_{r} ({ \sqrt{x} })^{10 - r} .( \frac{3}{ {x}^{2} } )^{r}

t _{r + 1} =    \: ^{10}c_{r} (x)^ \frac {10 - r}{2} . {3}^{r} . {x}^{ - 2r}  \\

t _{r + 1} =    \: ^{10}c_{r}. {3}^{r} . {x}^{ \frac{10 - r}{ 2}  - 2r}   \\

t _{r + 1} =    \: ^{10}c_{r}. {3}^{r} . {x}^{ \frac{10 -5 r}{ 2} }   \\

To be independent of x, the power of x should be 0

so,

 \frac{10 - 5r}{2}  = 0 \\

 \implies \: r = 2

Similar questions