Find the continued product
(x+1)(x-1)(x^2+1)
Answers
Answer:
How to solve your problem
(+1)(−1)(2+1)
(x+1)(x-1)(x^{2}+1)(x+1)(x−1)(x2+1)
Simplify
1
Distribute
(+1)(−1)(2+1)
{\color{#c92786}{(x+1)(x-1)(x^{2}+1)}}(x+1)(x−1)(x2+1)
(2+1)(−1)+1(2+1)(−1)
{\color{#c92786}{x(x^{2}+1)(x-1)+1(x^{2}+1)(x-1)}}x(x2+1)(x−1)+1(x2+1)(x−1)
2
Distribute
(2+1)(−1)+1(2+1)(−1)
{\color{#c92786}{x(x^{2}+1)(x-1)}}+1(x^{2}+1)(x-1)x(x2+1)(x−1)+1(x2+1)(x−1)
(−1)⋅3+(−1)+1(2+1)(−1)
{\color{#c92786}{(x-1) \cdot x^{3}+x(x-1)}}+1(x^{2}+1)(x-1)(x−1)⋅x3+x(x−1)+1(x2+1)(x−1)
3
Distribute
(−1)⋅3+(−1)+1(2+1)(−1)
{\color{#c92786}{(x-1) \cdot x^{3}}}+x(x-1)+1(x^{2}+1)(x-1)(x−1)⋅x3+x(x−1)+1(x2+1)(x−1)
4−13+(−1)+1(2+1)(−1)
{\color{#c92786}{x^{4}-1x^{3}}}+x(x-1)+1(x^{2}+1)(x-1)x4−1x3+x(x−1)+1(x2+1)(x−1)
4
Distribute
4−3+(−1)+1(2+1)(−1)
x^{4}-x^{3}+{\color{#c92786}{x(x-1)}}+1(x^{2}+1)(x-1)x4−x3+x(x−1)+1(x2+1)(x−1)
4−3+2−+1(2+1)(−1)
x^{4}-x^{3}+{\color{#c92786}{x^{2}-x}}+1(x^{2}+1)(x-1)x4−x3+x2−x+1(x2+1)(x−1)
5
Multiply by 1
4−3+2−+1(2+1)(−1)
x^{4}-x^{3}+x^{2}-x+1(x^{2}+1)(x-1)x4−x3+x2−x+1(x2+1)(x−1)
4−3+2−+(2+1)(−1)
x^{4}-x^{3}+x^{2}-x+(x^{2}+1)(x-1)x4−x3+x2−x+(x2+1)(x−1)
6
Distribute
4−3+2−+(2+1)(−1)
x^{4}-x^{3}+x^{2}-x+{\color{#c92786}{(x^{2}+1)(x-1)}}x4−x3+x2−x+(x2+1)(x−1)
4−3+2−+(−1)⋅2+1(−1)
x^{4}-x^{3}+x^{2}-x+{\color{#c92786}{(x-1) \cdot x^{2}+1(x-1)}}x4