Math, asked by DIPAN9935, 10 months ago

Find the coordinate of point which divides the segment joining (-1 7) (4 -3) in the ratio 2:3

Answers

Answered by hansika566667
0

Step-by-step explanation:

2:3 in the ratio we can take as m:n

-1=x1

7=y1

4=x2

-3=y2

formula is mx2+nx1÷m+n,my2+ny1÷m+n

2×4+3×-1÷5, 2×-3+3×7÷5

8-3÷5,-6+21÷5

5÷5,15÷5

1,3

=(1,3)

HOPE IT HELPS YOU....

Answered by ImperialGladiator
0

Step-by-step explanation:

Using section formula :

  \sf \:x, \: y  =  \frac{{mx}_{2} + {nx}_{1}}{m + n} \frac{{my}_{2} + {ny}_{1}}{m + n} \\

Where,

m = 2

n = 3

\sf {x}_{1} = -1

\sf {x}_{2} = 4

\sf {y}_{1} =  7

\sf {y}_{2} = (-3)

Substitution of the values :

 \longmapsto \sf \:x, \: y  =  \frac{{mx}_{2} + {nx}_{1}}{m + n}, \frac{{my}_{2} + {ny}_{1}}{m + n} \\  \longmapsto \sf \:x, \: y  =  \frac{8 + ( - 3)}{5} , \frac{ - 6 + 21}{5}  \\  \sf \: \longmapsto x, \: y  =  \frac{5}{5} ,  \frac{15}{5}  \\  \sf \:  \longmapsto x, \: y  =( 1, 3 )\: ans.

Similar questions