Math, asked by SwathiSajeevan8348, 8 months ago

Find the coordinate of the point equistant from three point a(5,3) b (5,-6) and c(1,-5)

Answers

Answered by varadad25
16

Answer:

The coordinates of the point which is equidistant from the points A, B and C are

\sf\:(\:-\:\frac{1}{6}\:,\:-\:\frac{3}{2}\:)

Step-by-step-explanation:

NOTE: Kindly refer to the attachment first. The figure provided in the attachment is rough figure.

We have given three points which are not collinear.

\therefore By joining those three points, we get \sf\:\triangle\:ABC.

\sf\:A\:\equiv\:(\:5,\:3\:)\:\equiv\:(\:x_{1},\:y_{1}\:)\\\\\sf\:B\:\equiv\:(\:5,\:-6\:)\:\equiv\:(\:x_{2},\:y_{2}\:)\\\\\sf\:C\:\equiv\:(\:1,\:-5\:)\:\equiv\:(\:x_{3},\:y_{3}\:)

We have to find the point which is equidistant from each of the three vertices of \sf\:\triangle\:ABC i. e. A, B and C.

Let P ( x, y ) be the point which is equidistant from three points A, B and C.

\therefore\:\sf\:d\:(\:P,\:A\:)\:=\:d\:(\:P, \:B\:)\;=\:d\:(\:P, \:C\:)\\\\\therefore\:\sf\:d\:(\:P, \:A\:)\:=\:d\:(\:P, \:B\:)\\\\\implies\sf\:\sqrt{\:(\:x\:-\:5\:)^{2}\:+\:(\:y\:-\:3\:)^{2}}\:=\:\sqrt{\:(\:x\:-\:5\:)^{2}\:+\:[\:y\:-\:(\:-\:6\:)\:]^{2}}

By taking square of both sides, we get,

\therefore\sf\:\cancel{(\:x\:-\:5\:)^{2}}\:+\:(\:y\:-\:3\:)^{2}\:=\:\cancel{(\:x\:-\:5\:)^{2}}\:+\:(\:y\:+\:6\:)^{2}\\\\\implies\sf\:(\:y\:-\:3\:)^{2}\:=\:(\:y\:+\:6\:)^{2}\\\\\implies\sf\:y^{2}\:-\:2\:\times\:y\:\times\:3\:+\:3^{2}\:=\:y^{2}\:+\:2\:\times\:y\:\times\:6\:+\:6^{2}\\\\\implies\sf\:\cancel{y^{2}}\:-\:6y\:+\:9\:=\:\cancel{y^{2}}\:+\:12y\:+\:36\\\\\implies\sf\:-\:6y\:-\:12y\:=\:36\:-\:9\\\\\implies\sf\:-\:18y\:=\:27\\\\\implies\sf\:y\:=\:-\:\frac{\cancel27}{\cancel18}\\\\\implies\boxed{\red{\sf\:y\:=\:-\:\frac{3}{2}}}

Now,

\sf\:d\:(\:P, \:B\:) \:=\:d\:(\:P, \:C\:)\\\\\therefore\sf\:\sqrt{\:(\:x\:-\:5\:)^{2}\:+\:[\:y\:-\:(\:-\:6\:)\:]^{2}}\:=\:\sqrt{\:(\:x\:-\:1\:)^{2}\:+\:[\:y\:-\:(\:-\:5\:)\:]^{2}}

By taking square of both sides, we get,

\sf\:(\:x\:-\:5\:)^{2}\:+\:(\:y\:+\:6\:)^{2}\:=\:(\:x\:-\:1\:)^{2}\:+\:(\:y\:+\:5\:)^{2}\\\\\implies\sf\:(\:x\:-\:5\:)^{2}\:-\:(\:x\:-\:1\:)^{2}\:=\:(\:y\:+\:5\:)^{2}\:-\:(\:y\:+\:6\:)^{2}\\\\\implies\sf\:\cancel{x^{2}}\:-\:10x\:+\:25\:-\:\cancel{x^{2}}\:-\:2x\:+\:1\:=\:\cancel{y^{2}}\:+\:10y\:+\:25\:-\:\cancel{y^{2}}\:+\:12y\:+\:36\\\\\implies\sf\:-\:10x\:+\:25\:-\:2x\:+\:1\:=\:10y\:+\:25\:+\:12y\:+\:36\\\implies\sf\:-\:12x\:+\:26\:=\:22y\:+\:61\\\implies\sf\:-\:12x\:=\:22y\:+\:61\:-\:26\\\implies\sf\:-\:12x\:=\:22y\:+\:35\:\:-\:-\:(\:1\:)

Now, by substituting \sf\:y\:=\:-\:\frac{3}{2} in equation ( 1 ), we get,

\sf\:-\:12x\:=\:22y\:+\:35\:\:\:-\:-\:-\:(\:1\:)\\\\\implies\sf\:-\:12x\:=\:\cancel{22}\:\times\:-\:\frac{3}{\cancel2}\:+\:35\\\\\implies\sf\:-\:12x\:=\:11\:\times\:(\:-\:3\:)\:+\:35\\\\\implies\sf\:-\:12x\:=\:-\:33\:+\:35\\\\\implies\sf\:-\:12x\:=\:2\\\\\implies\sf\:x\:=\:-\:\frac{\cancel2}{\cancel12}\\\\\implies\boxed{\red{\sf\:x\:=\:-\:\frac{1}{6}}}

Additional Information:

Formula to find the distance between two points:

\boxed{\red{\sf\:d\:(\:A,\:B\:)\:=\:\sqrt{\:(\:x_{1}\:-\:x_{2}\:)^{2}\:+\:(\:y_{1}\:-\:y_{2}\:)^{2}}}}

Attachments:

Sauron: Awesomeeeee :0
Similar questions