Math, asked by nik2408, 1 year ago

find the coordinate of the point which divides the line segment joining the points (5,-2) and (-3/4,4) in the ratio 7:9 which externally divide the line

Answers

Answered by aquialaska
1

Answer:

Coordinate of the point which divides the line segment joining given points is ( 201/8 , -23 )

Step-by-step explanation:

Given:

Coordinates of the point ( 5 , -2 ) and ( -3/4 , 4 )

Ratio in which line joining given point externally divided = 7 : 9

To find: Coordinate of the point which divide the line joining the points.

We know that if line joining the point (x_1,y_1)\:\:and\:\:(x_2,y_2) in ratio m : n  then coordinate of the point is given as (\frac{m.x_2-n.x_1}{m-n},\frac{m.y_2-n.y_1}{m-n})

So, Coordinate of the point dividing given point = (\frac{7\times\frac{-3}{4}-9\times5}{7-9},\frac{7\times4-9\times(-2)}{7-9})

                                                                               = (\frac{\frac{-21-180}{4}}{-2},\frac{28+18}{-2})

                                                                               = (\frac{-201}{-8},\frac{46}{-2})

                                                                               = (\frac{201}{8},-23)

Therefore, Coordinate of the point which divides the line segment joining given points is ( 201/8 , -23 )

Similar questions