Math, asked by babitajhajha09, 8 months ago

Find the coordinates of a point A, where AB is a diameter of a circle whose center is (2,-3) and B is (1,4).​

Answers

Answered by SarcasticL0ve
15

A circle with centre (2, - 3) and AB is the diameter of circle with B (1,4).

We have to find, Coordinate of point A.

━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let (x,y) be coordinate of point A.

If AB is the diameter of circle, the centre will be the mid - point of AB. \\ \\

Therefore,

Centre is the mid - point of AB. \\ \\

\setlength{\unitlength}{1 mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\circle*{1}}\put(24,32){\sf\large{O}}\put(21,24){\sf\large{(2,-3)}}\put(45,30){\line(-1,0){40}}\put(25,30){\circle*{1}}\put(46,30){\sf\large{B}}\put(46,24){\sf\large{(1,4)}}\put(45,30){\circle*{1}}\put(1,31){\sf\large{A}}\put(5,30){\circle*{1}}\put(-6,24){\sf\large{(x,y)}}\end{picture}

⠀⠀⠀

★ Coordinate of centre of circle = (2, -3). \\ \\

\sf x - coordinate\; of \;centre = \dfrac{x + 1}{2}\\ \\

\dashrightarrow\sf 2 = \dfrac{x + 1}{2}\\ \\

\dashrightarrow\sf 2 \times 2 = x + 1\\ \\

\dashrightarrow\sf 4 = x + 1\\ \\

\dashrightarrow\sf x = 4 - 1\\ \\

\dashrightarrow{\boxed{\sf{\pink{x = 3}}}}\;\bigstar\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━━

\sf y - coordinate\; of\; centre =  \dfrac{y + 4}{2}\\ \\

\dashrightarrow\sf - 3 = \dfrac{y + 4}{2}\\ \\

\dashrightarrow\sf - 3 \times 2 = y + 4\\ \\

\dashrightarrow\sf - 6 = y + 4\\ \\

\dashrightarrow\sf y = - 6 - 4\\ \\

\dashrightarrow{\boxed{\sf{\pink{y = - 10}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;the\; coordinate\;of\;A\;is\;(3, - 10).}}}

Similar questions