Math, asked by kavyapatel836, 5 months ago

Find the coordinates of a point A, where AB is the diameter of a circle whose center is (2, -3)

And B is (1, 4).​

Answers

Answered by Asterinn
4

Explanation of the diagram [ refer attached picture for rough diagram ] :-

➝ AB is diameter of circle with center O.

➝ Co-ordinates of O : (2,-3)

➝ Co-ordinates of B : (1,4)

➝ O is midpoint of line joining points A and B.

Let co-ordinates of A be (a,b).

Now, according to the question :-

 \longrightarrow  \rm(2, - 3) =  \bigg( \dfrac{a + 1}{2} , \dfrac{b +4}{2}\bigg) \\  \\  \implies  \rm2 = \dfrac{a + 1}{2} \\  \\  \implies  \rm4 = {a + 1}\\  \\  \implies  \rm4  - 1= {a}\\  \\  \implies  \rm3= {a} \\  \\  \\ \rm  \implies - 3 = \dfrac{b +4}{2} \\  \\ \rm  \implies - 6 = {b +4} \\  \\ \rm  \implies - 6 - 4 = {b}\\  \\ \rm  \implies - 10 = {b}

Answer :

Co-ordinates of A = (3,-10)

Attachments:
Answered by ayush64047
1

Step-by-step explanation:

given  \:  \:  coordinates \: of \:  \: o \: (2 \:  - 3) \\ coordinates \: of \: b \: ( 1 \:  \:  \:  \: 4) \:( x2 \: y2)\\ \\ let \: the \: coordinates \: of a \: be \: x \: and \: y \:( x1 \: y1)respectively \\  \\ by \: mid \: point \: formula \\  \ \\  \frac{x1 + x2}   2  {2}  \:  \:  \:  ||  \:  \:  \frac{y1 + y2} 2  { - 3}  \\  \\  \\  \\  \frac{x + 1}{2} = 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ||  \:  \:   \frac{ y + 4  }{2}  =  - 3 \\  \\  x + 1 = 2 \times 2 \:  \:  \:  \:  \:  \:  \: y + 4 =  - 3 \times 2 \\  \\ x + 1 = 4 \:  \:  \:  \: y + 4 =  - 6 \\  \:  \:  \\  \\ x = 4 - 1 \:  \:  \:  \: y =  - 6 - 4 \\ x = 3 \:  \: y =  - 10 \\ therefore \: coordinates \: of \: a \: are \:  \: (3 \: .  \:  - 10) \:

Similar questions