Find the coordinates of a point P on the linesegment joining A(1, 2) and B(6, 7) such that AP= 2/5 AB
CORRECT ANSWER WILL GET EXTRA POINTS AND BRAINLIST ANSWER
Answers
Answered by
9
Answer:
Consider the problem
Consider the problemAP=
Consider the problemAP= 5
Consider the problemAP= 52
Consider the problemAP= 52
Consider the problemAP= 52 AB
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PB
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP =
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 3
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=(
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+3
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 ,
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+3
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=(
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 5
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515 ,
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515 , 5
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515 , 520
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515 , 520
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515 , 520 )
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515 , 520 )=(3,4)
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515 , 520 )=(3,4)
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515 , 520 )=(3,4)
Consider the problemAP= 52 AB⇒5AP=2(AP+PB)⇒5AP=2AP+2PB⇒3AP=2PB⇒ PBAP = 32 ⇒AP:PB=2:3 And(x,y)=( 2+32×6+3×1 , 2+32×7+3×2 )=( 515 , 520 )=(3,4) So, coordinates of point P is (3,4)
Step-by-step explanation:
Please mark my answer as brainliest answer please
Answered by
1
Answer:
your answer is right bro
Similar questions
Math,
4 months ago
Math,
4 months ago
Social Sciences,
9 months ago
English,
9 months ago
Computer Science,
1 year ago