Math, asked by Delex1198, 6 months ago

Find the coordinates of a point which divides the time joining the points (-3-4)and(2,1)externally in the ratio of 3:2

Answers

Answered by VishnuPriya2801
65

Answer:-

Given:

A point divides the line segment joining the points ( - 3 , - 4) and (2 , 1) externally in the ratio 3 : 2.

Using section formula;

That is, the co - ordinates of a point which divides the line segment joining the points  \sf (x_1 ,y_1)\:\:\&\:\:(x_2,y_2) externally in the ratio m : n are given by:

 \sf \: (x \: , \: y) =  \bigg( \dfrac{mx _{2}  -  nx_1}{m - n}  \: \:,\: \:  \dfrac{my_2 - ny_1}{m - n}  \bigg)

Let,

  •  \sf x_1 = - 3

  •  \sf x_2 = 2

  •  \sf y_1 = - 4

  •  \sf y_2 = 1

  • m = 3

  • n = 2

Hence,

 \sf \implies \: (x \: , \: y) =  \bigg( \dfrac{(3)(2) - (2)( - 3)}{3 - 2}  \:  \:,  \:  \:  \dfrac{(3)(1) - (2)( - 4)}{3 - 2} \bigg)  \\  \\ \sf \implies \: (x \:,  \: y) =  \bigg( \dfrac{6  + 6}{1}  \:  \:,  \:  \:  \dfrac{3 + 8}{1} \bigg)  \\  \\ \sf \implies \large{ \red{ (x \: , \: y)  = (12 \: , \: 11)}}

Therefore, the co - ordinates of the point are (12 , 11).

Similar questions