Math, asked by atrinadh0279, 10 months ago

find the coordinates of centroid of a triangle whose vertices are (2,6)(8,12)(8,3)

Answers

Answered by Anonymous
4

\bold\red{\underline{\underline{Answer:}}}

\bold{Coordinates \ of \ centroid \ of \ triangle}

\bold{are \ (6,7)}

\bold\blue{Explanation}

\bold{Coordinates \ of \ centroid }

\bold{=(\frac{x1+x2+x3}{3}),(\frac{y1+y2+y3}{3})}

\bold\orange{Given:}

\bold{Vertices \ are:}

\bold{=>(x1,y1)=(2,6)}

\bold{=>(x2,y2)=(8,12)}

\bold{=>(x3,y3)=(8,3)}

\bold\pink{To \ find:}

\bold{Coordinates \ of \ centroid \ of \ triangle}

\bold\green{\underline{\underline{Solution}}}

\bold{By \ centroid \ formula}

\bold{Coordinates \ of \ centroid}

\bold{=(\frac{x1+x2+x3}{3}),(\frac{y1+y2+y3}{3})}

\bold{=\frac{2+8+8}{3},\frac{6+12+3}{3}}

\bold{=\frac{18}{3},\frac{21}{3}}

\bold{=6,7}

\bold\purple{\tt{\therefore{Coordinates \ of \ centroid \ of \ triangle}}}

\bold\purple{are \ (6,7)}

Answered by Anonymous
25

\red{\bold{\underline{\underline{Answer}}}}

\tt\green{\therefore{Centroid=(6,7)}}

\pink{\bold{\underline{Step-by-step\:explanation}}}

  • Given

 \tt  \implies Coordinate \: of \: p = (2,6) \\  \\ \tt  \implies Coordinate \: of \: q= (8,12) \\  \\ \tt  \implies Coordinate \: of \: r= (8,3)

  • To find

 \tt  \implies Centroid = ?

For finding value of centroid :

 \tt \implies x =  \frac{ x_{1} + x_{2}   +  x_{3}  }{3}  \\  \\ \tt \implies x = \frac{2+8+8}{3}  \\  \\ \tt \implies x = 6  \\  \\ \tt \implies y=\frac{ y_{1} + y_{2}   +  y_{3}  }{3} \\  \\\tt \implies y=  \frac{6 + 12+3}{3}  \\  \\ \tt \implies y= 7  \\  \\   \green{\tt \therefore Centroid \: is \:  (6,7)}

Similar questions