Math, asked by legendaryarya15398, 19 days ago

Find the coordinates of foci for the hyperbola 9x² - 16y²-72x +96y - 144 = 0​

Answers

Answered by vikkiain
0

\frac{(x - 4)^{2} }{ (\frac{12}{3})^{2} }  -  \frac{(y - 3)^{2} }{ (\frac{12}{4})^{2} }  = 1

Step-by-step explanation:

Given, \:  \:9x² - 16y²-72x +96y - 144 = 0 \\ 9x² - 16y²-72x +96y  =  144 \\  9x² - 16y²-72x +96y  + 144 - 144 =  144\\ (9 {x}^{2}  - 72x + 144) - (16 {y}^{2}  - 96y + 144) = 144 \\  \{(3x)^{2} - 2 \times 3x \times 12 + (12)^{2}   \} -  \{ (4y)^{2} - 2 \times 4y \times 12 + (12)^{2}  \} = 144 \\ (3x - 12)^{2}  - (4y - 12)^{2}  = 144  \\  \{3(x - 4) \}^{2}  -  \{ 4(y - 3)\}^{2}  = 144\\ 9(x - 4)^{2}  - 16(y - 3)^{2}  = 144 \\  \frac{9(x - 4)^{2}  - 16(y - 3)^{2} }{144}  =  \frac{144}{144}  \\  \frac{9(x - 4)^{2}}{144}  -  \frac{16(y - 3)^{2}}{144}  = 1 \\  \frac{(x - 4)^{2} }{ \frac{144}{9}}  -  \frac{(y - 3)^{2} }{ \frac{144}{16} }  = 1 \\ \frac{(x - 4)^{2} }{ (\frac{12}{3})^{2} }  -  \frac{(y - 3)^{2} }{ (\frac{12}{4})^{2} }  = 1

Similar questions