Math, asked by srtmz6zmvy, 9 months ago

Find the coordinates of one endpoint of a segment if one endpoint is (6, 3) and the midpoint is (1, 5).

A.
(2, 4)

B.
(– 4, 7)

C.
(2.5, 4)

D.
(4, 7)

Answers

Answered by Cosmique
9

Answer :

  • Coordiantes of another end point would be (-4, 7)

Option B : (-4,7) is correct.

Given :

  • For a line segment one endpoint is given as (6,3) and the midpoint of segment is (1,5)

To find :

  • Second endpoint of the line segment , ( x,y ) = ?

Formula required :

  • Midpoint formula

\red{\bigstar}\boxed{\sf{(x\;,\;y)=\left(\dfrac{x_1+x_2}{2}\;,\;\dfrac{y_1+y_2}{2}\right)}}

[ Where (x,y) are coordinates of point giving the mid point of a line segment joining points (x₁,y₁) and (x₂,y₂) ]

Solution :

Using Mid point formula

\implies\sf{(1\;,\;5)=\left(\dfrac{(6+x)}{2} \;,\;\dfrac{(3+y)}{2}\right)}

so,

\implies\sf{1=\dfrac{6+x}{2}\;\;\;,\;\;\;5=\dfrac{3+y}{2}}

\implies\sf{6+x=2\;\;\;,\;\;\;3+y=10}

\implies\sf{x=2-6\;\;\;,\;\;\;y=10-3}

\implies\underline{\boxed{\red{\sf{x=-4\;\;\;,\;\;\;y=7}}}}

Therefore,

  • Coordinates of another end point are (-4, 7).
Similar questions