Social Sciences, asked by kolisahil009, 3 months ago

Find the coordinates of point P, if P divides the line segment joining the points A(-2, -5), B(4, 3) in the ratio 3:4​

Answers

Answered by ItzBrainlyBeast
55

\maltese\LARGE\textsf{\underline{ SoLuTioN :-}}

\large\textsf{                                                               }

  \sf\longrightarrow{ \: Here \:  \:  \: we \: \:  \:  have \:  \:  \: to \:  \:  \: use \:  \:  \: the \:  \:  \: section \:  \:  \: formula \:   : -  }

\large\textsf{                                                               }

\boxed{\begin{array}{c}\sf\color{purple}  \: x \:  =  \:  \cfrac{m x_{2} \:   +  \: n x_{1} }{m \:  +  \: n \: }  \\  \\   \\   \sf \color{purple} \: y \:  =  \:  \cfrac{m  y_{2} \:  +  \:  n y_{1} }{m \:  +  \: n \: } \end{array}}\small\textsf{ ------( Section \; \; Formula )}

\large\textsf{                                                               }

Let ,

A ( - 2 , - 5 ) = x₁ , y₁

B ( 4 , 3 ) = x₂ , y₂

P = ( x , y )

\large\textsf{                                                               }

__________________________________________________________

  \sf  \: \therefore \: x \:  =  \:  \cfrac{3 \times 4 \:  +  \: 4  \times ( - 2)}{3 + 4}  \\  \\  \\  \sf =  \:  \frac{12 \:  +  \: ( - 8)}{7}  \\  \\  \\   \sf=  \:  \frac{12 \:  -  \: 8}{7}  \\  \\  \\  \:   \therefore  \color{red}\boxed {  \sf\: x  \:  =  \:  \frac{4}{7} }

\large\textsf{                                                               }

 \sf \:  \therefore  \: y \:  =  \:  \cfrac{3 \times 3 \:  +  \: 4 \times ( - 5)}{3 + 4}  \\  \\  \\  = \sf  \:  \frac{9  \:  +  \:  (- 12)}{7}  \\  \\  \\  =  \: \sf  \frac{9 \:  - 12}{7}  \\  \\  \\  \:   \therefore  \color{red} { \boxed { \sf\: y   \: =  \:  \frac{ - 3}{7} }}

\large\textsf{                                                               }

 {\therefore { \:  \: \sf{\:  \: the \:  \:  \: co - ordinates \:  \:  \: of \:  \:  \: point \:  \:  \: P \:  \:  \: are \: }}}

\qquad\tt{:}\longrightarrow\; \; \; \boxed{{\large\textsf\color{green}{P = $\left(\cfrac{\large\textsf{4}}{\large\textsf{7}} \; \;  ,\; \; \cfrac{\large\textsf{- 3}}{\large\textsf{7}} \right)$}}}

Answered by anish28908
26

Explanation:

Given:

ABAP=73

⇒AP=73AB

⇒AP=73(AP+PB)

⇒7AP=3AP+3PB

⇒7AP−3AP=3PB

⇒4AP=3PB

⇒PBAP=43

Hence, the point P divides AB in the ratio 3:4

(x,y)=(m1+m2m1x2+m2x1,m1+m2m1y2+m2y1)...(i)

8/7

Similar questions