Find the coordinates of point Q and R on median BE and CF respectively. such that BQ:QE is equal to 2:1 CR:RF is equal to 2:1
Answers
Answered by
13
The coordinates of Q and R are (11/3 , 11/3).
As per the question, the coordinates of E and F can be found as below:
- As BE is the median, E is the mid-point of AB. Therefore,
- E = [ (4+1) / 2, (2+4) /2 ]
= (5/2,6/2)
= (5/2,3)
- As CF is the median, F is the mid-point of AB.
- F = [ (4+6) / 2, (2+5) / 2 ]
= (10/2,7/2)
= (5,7/2)
- Now, as R lies on CF, therefore by applying section formula, we get,
R = [ ( 2(5) + 1(1) ) / (2+1) , ( 2(7/2) + 1(4) ) / (2+1) ]
= (11/3 , 11/3)
- Also, Q lies on BE, therefore by applying section formula, we get,
Q = [ ( 2(5/2) + 1(6) ) / (2+1) , ( 2(3) + 1(5) ) / (2+1) ]
= (11/3 , 11/3)
Attachments:
Similar questions
Computer Science,
4 months ago
Hindi,
4 months ago
Social Sciences,
4 months ago
Political Science,
9 months ago
Hindi,
1 year ago
Math,
1 year ago