Math, asked by swapnabhanuv, 4 months ago

find the coordinates of point which divides the line segment joining the points (a+b,a-b) and (a-b,a+b) in the ratio 3:2 interally

Answers

Answered by itzcutiemisty
44

Solution:

We know, the coordinate of the point P(x, y) which divides the line segment joining A(\sf{x_1, y_1}) and B(\sf{x_2, y_2}) in the ratio m : n are given by:

\sf{x\:=\:\dfrac{mx_2\:+\:nx_1}{m\:+\:n}\:,\:y\:=\:\dfrac{my_2\:+\:ny_1}{m\:+\:n}}

So here, m : n = 3 : 2

\: (a+b, a-b) = P(\sf{x_1,\:y_1})

\: (a-b, a+b) = A(\sf{x_2,\:y_2})

\: \: \: \: :\implies\:\sf{x\:=\:\dfrac{3(a-b)\:+\:2(a+b)}{3\:+\:2}\:,\:y\:=\:\dfrac{3(a+b)\:+\:2(a-b)}{3\:+\:2}}

\:

\: \: \: \: :\implies\:\sf{x\:=\:\dfrac{3a\:-\:3b\:+\:2a\:+\:2b}{5}\:,\:y\:=\:\dfrac{3a\:+\:3b\:+\:2a\:-\:2b}{5}}

\:

\: \: \: \: :\implies\:\sf{x\:=\:\dfrac{3a\:+\:2a\:-\:3b\:+\:2b}{5}\:,\:y\:=\:\dfrac{3a\:+\:2a\:+\:3b\:-\:2b}{5}}

\:

\: \: \: \: :\implies\:\sf{x\:=\:\dfrac{5a\:-\:b}{5}\:,\:y\:=\:\dfrac{5a\:+\:b}{5}}

\:

\: \: \: \:{\small{\boxed{\sf{\implies\:{\bigg(\dfrac{5a\:-\:b}{5},\:\dfrac{5a\:+\:b}{5})}}}}}

Answered by BrainlyConqueror0901
67

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Coordinate \: of \: O \: = \bigg( \frac{5a - b}{5} . \frac{5a + b}{5}  \bigg)}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

Let AOB be a line segment whose points are A , O and B so that point O divides the line segment into m : n = 3 : 2.

\green{\underline{\bold{Given :}}} \\  \tt:  \implies Coordinate \: of \: A = (a + b,a - b) \\  \\ \tt:  \implies Coordinate \: of \: B = (a -  b,a  +  b) \\  \\ \tt:  \implies Ratio = 3 : 2 \\  \\ \red{\underline{\bold{To \: Find :}}} \\  \tt:  \implies Coordinate \: of \: O =?

• According to given question :

 \green{ \star}  \tt \: \frac{m}{n}  =  \frac{3}{2} \\  \\ \green{ \star}  \tt \:Coordinate \: of \: A = ( x_{1}, y_{1}) \\  \\\green{ \star}  \tt \:Coordinate \: of \: B= ( x_{2}, y_{2}) \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies x =  \frac{m x_{2}  +  nx_{1} }{m + n }  \\  \\ \tt:  \implies x =  \frac{(a  - b)3 + (a    + b)2}{3 + 2}  \\  \\ \tt:  \implies x =  \frac{3a  - 3b + 2a  + 2b}{5}  \\  \\  \green{\tt:  \implies x =  \frac{5a - b}{5}} \\  \\  \bold{similarly : } \\  \tt:  \implies  y =  \frac{m y_{2} +  ny_{1}}{m + n}  \\  \\ \tt:  \implies  y =  \frac{(a + b)3 + (a - b)2}{3 + 2}  \\  \\ \tt:  \implies  y =  \frac{3a + 3b + 2a - 2b}{5}  \\  \\  \green{\tt:  \implies  y =  \frac{5a + b}{5} } \\  \\   \green{\tt \therefore Coordinate \: of \: O \: is \:  \bigg( \frac{5a - b}{5} ,\frac{5a + b}{5}  \bigg)}

Similar questions