Math, asked by jugal04, 1 year ago

find the coordinates of points which trisects the line segment joining (1,-2) and (-3,4)

Answers

Answered by ahmed8486
28
HOPE IT HELPS YOU...!!!


Given line segment joining the points A(1,-2)and B(-3,4)

Let P and Q be the points of trisection of AB i.e., AP = PQ = QB

Therefore, P divides AB internally in the ratio 1 : 2.

Therefore, the coordinates of P, by applying the section formula, are  m x 2 +n x 1 m + n , m y 2 + n y 1 m + n   . 

= [{1(-3) + 2(1)} / (1 + 2), {1(4) + 2(-2)} / (1 + 2)], = (–1 / 3, 0)

Now, Q also divides AB internally in the ratio 2 : 1. So, the coordinates of Q are

= [{2(-3) + 1(1)} / (1 + 2), {2(4) + 1(-2)} / (1 + 2)], = (–5/3, 4/3)

Therefore, the coordinates of the points of trisection of the line segment joining A and B are (–1 / 3, 0) and (–5/3, 4/3)

ahmed8486: mark it as brainiest please...
ahmed8486: i need a vartuoso rank..
Answered by rukumanikumaran
2

 \mathbb{HOPE \: THIS \: HELPS \:U }  

\huge{\mathcal{\pink{A}\green{N}\red{S}\blue{W} {E}\green{R}}

we will use this formula \frac{m_1x_2+m_2x_1}{m_1+m_2} , \frac{m_1y_2+m_2y_1}{m_1+m_2}

D divides line segment ab into ratio of 1:2 m_1=1,m_2= 2 x_1=1,x_2= -3 y_1=-2,y_2= 4  

D = \frac{1(-3)+2(1)}{1+2} , \frac{1(4)+2(-2)}{1+2}

D = \frac{-3+2 }{3} , \frac{4-4}{3}

D = \frac{-1 }{3} , \frac{0}{3}

D = \frac{-1 }{3} , 0

D coordinates are \frac{-1 }{3} , 0

C divides line segment ab into ration of 2:1 m_1=2,m_2= 1 x_1=1,x_2= -3 y_1=-2,y_2= 4  

c = \frac{2(-3)+1(1)}{1+2} , \frac{2(4)+1(-2)}{1+2}

c = \frac{-6+1 }{3} , \frac{8-2}{3}

c = \frac{-5 }{3} , \frac{6}{3}

c = \frac{-5 }{3} , 2

c coordinates are \frac{-1 }{3} , 2

Attachments:
Similar questions