Math, asked by drrpkakati8638, 1 year ago

Find the coordinates of the centre, vertices, eccentricity, foci, length of the latus rectum of the ellipse 25x2 +16y2 =1600.

Answers

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Centre=(0,0)}}}\\

\green{\tt{\therefore{Vertices=(0,\pm10)}}}\\

\green{\tt{\therefore{Foci=(0,\pm2\sqrt{5})}}}\\

\green{\tt{\therefore{Latus\:rectum(LL')=12.8\:units}}}

\green{\tt{\therefore{Eccentricity=\frac{1}{\sqrt{5}}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: ellipse =  25{x}^{2} +  16{y}^{2}  = 1600} \\  \\ \red {\underline \bold{to \: find: }}\\ \tt{:\implies Centre=?} \\\\ \tt{:\implies Vertices=?}\\ \\ \tt{:\implies Foci=?}\\ \\ \tt {: \implies Length \: of \: latus \: rectum (LL')=?}\\\\ \tt{:\implies Eccentricity=?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{: \implies Centre = (0,0)} \\  \\    \green{\tt{: \implies Centre = (0,0)}}

\tt{:\implies 25x^{2}+16y^{2}=1600}\\\\ \tt{:\implies \frac{x^{2}}{\frac{1600}{25}}+\frac{y^{2}}{\frac{1600}{16}}=1}\\\\ \tt{: \implies  \frac{ {x}^{2} }{64}  +  \frac{ {y}^{2} }{100}  = 1} \\   \\ \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   +   \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  64} \\   \\   \tt{\circ \:  {b}^{2}  = 100} \\\\ \tt{\circ\: a< b}

 \bold{As \: we \: know \: that} \\   \tt{: \implies vertices = (0, \pm b)} \\  \\   \green{\tt{: \implies vertices = (0, \pm 10)}} \\ \\  \bold{As \: we \: know \: that} \\  \tt{ :   \implies  {a}^{2}   =  {b}^{2}(1 -  {e}^{2}  )} \\  \\   \tt{: \implies64 = 100(1 -  {e}^{2} )} \\   \\   \tt{: \implies  {e}^{2}  = 1 -  \frac{4}{5} } \\  \\   \tt{: \implies  {e}^{2}  =  \frac{1}{5} } \\  \\    \green{\tt{: \implies e =  \frac{1}{\sqrt{5}} }}\\   \\   \bold{As \: we \: know \: that} \\   \tt{: \implies foci = (0, \pm be)} \\  \\   \green{\tt{: \implies Foci= (0, \pm 2 \sqrt{5} )}} \\  \\

 \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {a}^{2}  }{b} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 64}{10} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  12.8\:units}}

Similar questions