Math, asked by harshithka, 1 year ago

Find the coordinates of the centroid of a triangle whose vertices are (0 0) (6 0) and (0 8)

Answers

Answered by tmamta430
3

Answer:we know that centroid =point of the intersection of medians of the triangle.so the coordinates of the centroid of the triangle is (2,4)

please mark it as brainliest and give so many likes

Attachments:
Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(2,\frac{8}{3})}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Coordinate \: of \: A = (0,0)} \\ \\ : \implies \text{Coordinate \: of \: B = (6,0)} \\ \\ : \implies \text{Coordinate \: of \: C = (0,8)} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\ \circ \: \text{Centroid \: of \: triangle(G}) \\ \\ \circ \: \text{For \: x }= \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ \circ \: \text{For \: y} = \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\ \bold{For \: x}\\ : \implies x = \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ : \implies x = \frac{0+6 + 0}{3} \\ \\ : \implies x = \frac{6}{3} \\ \\ \green{: \implies x =2} \\ \\ \bold{For \: y}\\ : \implies y= \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ : \implies y= \frac{ 0 +0+8}{3} \\ \\ : \implies y = \frac{8}{3} \\ \\ \green{: \implies y =\frac{8}{3}} \\ \\ \green{\therefore \text{Coordinate \: of \: centroid(G) = }(2,\frac{8}{3})}

Similar questions