Physics, asked by fncd12, 7 months ago

find the coordinates of the foot of perpendicular draw from origin upon the lines 3x-5y+2=0 and 4x-3y+5=0 and show that equation of straight line joining the feet is 26 x+53 y=11

Answers

Answered by MaheswariS
6

\textbf{Given:}

\textsf{Lines are 3x-5y+2=0 and 4x-3y+5=0}

\textbf{To find:}

\textsf{Coordinates of the foot of the perpendicular drawn from}

\textsf{origin to the given lines}

\textbf{To prove:}

\textsf{Equation of line joining foot of perpendiculars is 26x+53y=11}

\textbf{Solution:}

\textsf{The line perpendicular to 3x-5y+2=0}

\textsf{can be written as}\;\mathsf{-5x-3y=-5x_1-3y_1}

\textsf{It passes through (0,0)}

\implies\mathsf{5x+3y=0}

\textsf{Foot of the perdicular is obtained by solving 3x-5y+2=0 and 5x+3y=0}

\mathsf{\dfrac{x}{0-6}=\dfrac{y}{10-0}=\dfrac{1}{9+25}}

\mathsf{\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{1}{34}}

\mathsf{\dfrac{x}{-3}=\dfrac{y}{5}=\dfrac{1}{17}}

\mathsf{Foot\;of\;perpendicular\;\left(\dfrac{-3}{17},\dfrac{5}{17}\right)}

\textsf{The line perpendicular to 4x-3y+5=0}

\textsf{can be written as}\;\mathsf{-3x-4y=-3x_1-4y_1}

\textsf{It passes through (0,0)}

\implies\mathsf{3x+4y=0}

\textsf{Foot of the perdicular is obtained by solving 4x-3y+5=0 and 3x+4y=0}

\mathsf{\dfrac{x}{0-20}=\dfrac{y}{15-0}=\dfrac{1}{16+9}}

\mathsf{\dfrac{x}{-20}=\dfrac{y}{15}=\dfrac{1}{25}}

\mathsf{\dfrac{x}{-4}=\dfrac{y}{3}=\dfrac{1}{5}}

\mathsf{Foot\;of\;perpendicular\;\left(\dfrac{-4}{5},\dfrac{3}{5}\right)}

\textsf{Equation of line joining foot of perpendiculars is}

\mathsf{\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}}

\mathsf{\dfrac{y-\dfrac{5}{17}}{\dfrac{3}{5}-\dfrac{5}{17}}=\dfrac{x+\dfrac{3}{17}}{\dfrac{-4}{5}+\dfrac{3}{17}}}

\mathsf{\dfrac{\dfrac{17y-5}{17}}{\dfrac{51-25}{85}}=\dfrac{\dfrac{17x+3}{17}}{\dfrac{-68+15}{85}}}

\mathsf{\dfrac{\dfrac{17y-5}{17}}{\dfrac{26}{85}}=\dfrac{\dfrac{17x+3}{17}}{\dfrac{-53}{85}}}

\mathsf{\dfrac{17y-5}{26}=\dfrac{17x+3}{-53}}

\mathsf{-53{\times}17y+265=26{\times}17y+78}

\mathsf{-53{\times}17y+187=26{\times}17x}

\mathsf{Divide\;by\;17}

\mathsf{-53y+11=26x}

\implies\boxed{\mathsf{26x+53y=11}}

Similar questions