Math, asked by PragyaTbia, 1 year ago

Find the coordinates of the foot of perpendicular from the point ( -1, 3) to the line 3x-4y-16=0.

Answers

Answered by MaheswariS
7

Answer:

\text{The foot of the perpendicular is }(\frac{68}{25},\frac{-49}{25})

Step-by-step explanation:

Find the coordinates of the foot of perpendicular from the point ( -1, 3) to the line 3x-4y-16=0.

\text{The foot of perpendicular from the point ( -1, 3) to the line 3x-4y-16=0 is given by }

\boxed{\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{-(ax_1+by_1+c)}{a^2+b^2}}

\text{Here, }

(x_1,y_1)=(-1,3)

a=3,\,b=-4,\,c=-16

\implies\frac{x+1}{3}=\frac{y-3}{-4}=\frac{-(3(-1)+(-4)(3)+(-16))}{3^2+(-4)^2}

\implies\frac{x+1}{3}=\frac{y-3}{-4}=\frac{-(-3-12-16)}{9+16}

\implies\frac{x+1}{3}=\frac{y-3}{-4}=\frac{-(-31)}{25}

\implies\frac{x+1}{3}=\frac{y-3}{-4}=\frac{31}{25}

\text{Now, }

\frac{x+1}{3}=\frac{31}{25}

x+1=\frac{93}{25}

x=\frac{93-25}{25}

\implies\:x=\frac{68}{25}

\frac{y-3}{-4}=\frac{31}{25}

y-3=\frac{-124}{25}

y=\frac{-124+75}{25}

\implies\:y=\frac{-49}{25}

\therefore\text{The foot of the perpendicular is }(\frac{68}{25},\frac{-49}{25})

Answered by sk940178
3

Answer:

{(\frac{68}{25}),-(\frac{49}{25})}

Step-by-step explanation:

We have the straight line 3x-4y-16=0 .........(1)

Arranging this equation into slope-intercept form (i.e. y=mx+c  form, where, m=slope and c= y-intercept), we get the equation as,

y= (3/4)x-4 ......(2)

So, the slope is (3/4).

Let us assume that the slope of the other straight line be M.

Now, we know that the product of slopes of two perpendicular straight lines is -1.

So, M×(\frac{3}{4})=-1

M= -(\frac{4}{3})

Hence, the equation of the perpendicular straight line is

y=-(\frac{4}{3})x+K [ Where K is the y-intercept of this straight line]

This line passes through the point (-1,3) [Given].

So, we get 3=-(\frac{4}{3})(-1)+K

⇒3=(\frac{4}{3}) +K

⇒K= \frac{5}{3}

Now, the equation of the perpendicular straight line is

y=-(\frac{4}{3})x+\frac{5}{3}

4x+3y-5 =0 ......(3)

Now, Solving equations (1) and (3), we get,

9x+16x-48-20=0

⇒25x-68=0

⇒x= \frac{68}{25}

From equation (2), we get,

y=(\frac{3}{4})×(\frac{68}{25})-4

By simplification, we get,

y=-(\frac{49}{25}).

Therefore, the foot of the perpendicular is {(\frac{68}{25}),-(\frac{49}{25})} (Answer)

Similar questions