Math, asked by Sandipaaan, 6 months ago

Find the coordinates of the point
divided which trisect the points
(1,-2) and (-3, 4)
3
Show Your Work​

Answers

Answered by Anonymous
16

\;\;\underline{\textbf{\textsf{ Given:-}}}

• The coordinates of the points are

(1 , -2) and (-3 , 4)

• A point trisect these given points divides into 3 equal parts.

\;\;\underline{\textbf{\textsf{ To Find :-}}}

• The coordinates of the points dividing the given lines.

\;\;\underline{\textbf{\textsf{ Solution :-}}}

Let us consider a point R(x , y) divides the line PQ into three equal parts ot trisect.

Then , the probable ratios will be 1:2 or 2:1

We know that,

 \boxed{ \tt{x =  \frac{m x_{2} + n x_{1} }{m + n}  \:  \:  , \:  \:  y =  \frac{m y_{2} + n y_{1} }{m + n} }}

\underline{\:\textsf{ Taking ratio as 1:2 :}}

 \sf x =  \dfrac{1 \times ( - 3) + 2 \times 1}{1 + 2}  \\  \\  \sf \longrightarrow  x =  \dfrac{ - 3+ 2}{3}  \\  \\  \sf \longrightarrow  x =  \dfrac{ - 1}{3}

_____★

 \sf y =  \dfrac{1 \times (4) + 2 \times ( -2)}{1 + 2}  \\  \\  \sf  \longrightarrow y =  \dfrac{4 - 4}{3}  \\  \\  \sf  \longrightarrow y = 0

Therefore , the point (-1/3 , 0) trisect the line PQ

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\:\textsf{Again,   taking ratio as 2:1  :}}

 \sf x =  \dfrac{2 \times ( - 3) + 1 \times1}{1  +2}  \\  \\  \sf \longrightarrow  x =  \dfrac{ - 6 + 1}{3}  \\  \\  \sf  \longrightarrow x =  \dfrac{ - 5}{3}

_____★

\sf y = \dfrac{2\times (4) + 1\times (-2)}{1+2} \\\\ \sf \longrightarrow y = \dfrac{8 - 2}{3} \\\\ \sf \longrightarrow y = \dfrac{6}{3} \\\\ \sf\longrightarrow y = 2

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{  The other point trisect the line AB is  \textbf{ (-5/3 , 2)}}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
1

Answer:

Answer : (-5/3, 2)

Hope it right

Similar questions