Math, asked by lekhashree49, 2 months ago

Find the coordinates of the point equidistant from the given points.
A(5, 1), B(-3, -7) and C(7, -1).

Answers

Answered by BrainlyTwinklingstar
4

Answer

Let the required point be \sf P (x, y).

Then,

\sf \dashrightarrow PA = PB = PC

\sf \dashrightarrow {PA}^{2} = {PB}^{2} = {PC}^{2}

\sf \dashrightarrow {PA}^{2} = {PB}^{2} \: \: and \: \: {PB}^{2} = {PC}^{2}

\sf \dashrightarrow \begin{cases} \sf {(x - 5)}^{2} + {(y - 1)}^{2} = {(x + 3)}^{2} + {(y + 7}^{2} \\ \sf {(x + 3)}^{2} + {(y + 7)}^{2} = {(x - 7)}^{2} + {(y + 1)}^{2}\end{cases}

\sf \dashrightarrow \begin{cases} \sf {x}^{2} + {y}^{2} - 10x - 2y+ 26 = {x}^{2} + {y}^{2} + 6x + 14y + 58 \\ \sf {x}^{2} + {y}^{2} + 6x + 14y + 58 = {x}^{2} + {y}^{2} - 14x + 2y + 50\end{cases}

\sf \dashrightarrow {x}^{2} + {y}^{2} - 10x - 2y + 26 = {x}^{2} + {y}^{2} + 6x + 14y + 58

\sf \dashrightarrow 16x + 16y = -32

\sf \dashrightarrow x + y = -2 \: \: --- (i)

\sf \dashrightarrow {x}^{2} + {y}^{2} - 6x + 14y + 58 = {x}^{2} + {y}^{2} - 14x + 2y + 50

\sf \dashrightarrow 20x + 12y = -8

\sf \dashrightarrow 5x + 3y = -2 \: \: --- (ii)

Multiply (i) by 5 and subtract (ii) from the result.

\sf \dashrightarrow 2y = -8

\sf \dashrightarrow y = -4

Putting value of y in equation (i), we get x = 2.

So,

\sf \dashrightarrow x = 2 \: \: and \: \: y = -4

Thus, the required point is \sf P(2, -4).

Similar questions