Chinese, asked by MASTERblasterrr, 8 months ago

Find the coordinates of the point equidistant from three given points A(5,1), B(-3.-7) and
C(7,-1).​

Answers

Answered by KrishnaKumar01
5

Answer:

The given three points are A (5, 1) , B (–3, –7 ) and C (7, –1)

Let P (x, y) be the point equidistant from these three points.

So, PA = PB = PC

⇒ x2 + 25 – 10x + y2 + 1 – 2y = x2 + 9 + 6x + y2 + 49 + 14y = x2 + 49 – 14x + y2 + 1 + 2y

⇒ 25 – 10x + 1 – 2y = 9 + 6x + 49 + 14y = 49 – 14x + 1 + 2y

25 – 10x + 1 – 2y = 9 + 6x + 49 + 14y

⇒ 26 = 16x + 58 + 16y

⇒ 16x + 32 + 16y = 0

⇒ x + 2 + y = 0 … (1)

25 – 10x + 1 – 2y = 49 – 14x + 1 + 2y

⇒ 26 + 4x – 4y = 50

⇒ 4x – 4y = 24

⇒ x – y = 6 … (2)

Solving (1) and (2)

x = 2, y = –4

Thus, the required point is (2, –4)

Answered by Anonymous
10

GIVEN:-

•Radius of the cylinder=5cm

•Height of the cylinder =12 cm

TO FIND OUT:--

• The volume and the surface area of the remaining solid

SOLUTION :-

 \textsf{formula used}\begin{cases} \bf volume   \: _{cylinder} =  \pi  r {}^{2} h\\ \bf  CSA_{cylinder}  = 2 \pi rh\\ \bf CSA\: _{cone}=  \pi  rl\\ \bf \: volume   \: _{cone} =  \frac{1}{3}  \pi r {}^{2} h</p><p></p><p></p><p>\end{cases}

Now ,

 \bf volume   \: _{cylinder}  \:  =   {\bigg (} \frac{22}{7} \times 5 \times 5 \times 12{ \bigg)cm {}^{3} }  \\ \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =   \bf \frac{6600}{7}  cm {}^{3}

 \bf  \: volume \: _{cone}  \: ={  \bigg(} \frac{1}{3} \times  \frac{22}{7} \times 5 \times 5  \times 12 { \bigg)}cm {}^{3}    \\  \\ \:  \:  \:  \:  \:  \:  \:  \:   =  \bf \frac{2200}{7} cm {}^{3}

•Volume of the remaining solid =(volume of the cylinder) -(volume of the cone)

 \bf \implies { \bigg(} \frac{6600}{7}  -  \frac{2200}{7}{  \bigg)} cm {}^{3}  =  \frac{4400}{7} cm {}^{3}  = 628.57 \: cm {}^{3}  \\  \\

•Slant height of the cone(l)

 \bf \: l =  \sqrt{r {}^{2} + h {}^{2}  }  \\

 \bf  \implies l =  \sqrt{5 {}^{2} + (12) {}^{2}   }   =   \sqrt{169} = 13cm \\   \\

 \textsf{CSA} \bf_{cone}={\bigg (} \frac{22}{7}  \times 5 \times 13 { \bigg)}cm² =  \frac{1430}{7} cm² \\

 \textsf{CSA} \bf_{cylinder}= {\bigg (} 2 \times \frac{22}{7}  \times 5 \times 12{ \bigg)}= \frac{2640}{7} cm² \\  \\

•Now, area of upper circular base of base of cylinder =

  = \bf  \pi r {}^{2}  sq. \: unit \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \bf{ \bigg(} \frac{22}{7}  \times 5 \times 5 { \bigg)}cm {}^{2}  =  \frac{550}{7} cm {}^{2}

•Whole surface area of the remaining solid =CSA(cylinder)+CSA(cone)+area of upper base of cylinder

  \implies\bf { \bigg(} \frac{2640}{7}  +  \frac{1430}{7}  +  \frac{550}{7}  {  \bigg)}cm {}^{2} = 660cm {}^{2}   \\

Similar questions