CBSE BOARD XII, asked by keralite80, 7 months ago

Find the coordinates of the point equidistant from three given points A(5,1), B(-3.-7) and
C(7,-1).​

Answers

Answered by Anonymous
5

Let P (x, y) be the point equidistant from these three points.

So, PA = PB = PC

⇒ x2 + 25 – 10x + y2 + 1 – 2y = x2 + 9 + 6x + y2 + 49 + 14y = x2 + 49 – 14x + y2 + 1 + 2y

⇒ 25 – 10x + 1 – 2y = 9 + 6x + 49 + 14y = 49 – 14x + 1 + 2y

⇒25 – 10x + 1 – 2y = 9 + 6x + 49 + 14y

⇒ 26 = 16x + 58 + 16y

⇒ 16x + 32 + 16y = 0

⇒ x + 2 + y = 0  … (1)

25 – 10x + 1 – 2y = 49 – 14x + 1 + 2y

⇒ 26 + 4x – 4y = 50

⇒ 4x – 4y = 24

⇒ x – y = 6  … (2)

Solving (1) and (2)

x = 2, y = –4

Thus, the required point is (2, –4)

Answered by Anonymous
3

 \bf \underline{SOLUTION}:- \\  \\

 \bf \: •Let \: the \: required \: point \: be \: P(x,y).Then, \\  \\

 \bf PA=PB=PC \\  \\

 \bf \implies PA²=PB²=PC² \\  \\

 \bf \implies PA²=PB² \: and \: PB²=PC² \\  \\

 \implies \begin{cases}</p><p></p><p> \bf(x - 5) {}^{2} + (y - 1) {}^{2}   = (x + 3) {}^{2}  + (y + 7) {}^{2} \\</p><p></p><p> \bf( x + 3) {}^{2}  + (y + 7) {}^{2}  = (x - 7) {}^{2}  + (y + 1) { }^{2} </p><p></p><p>\end{cases}</p><p> \\  \\

 \implies\begin{cases} \bf</p><p></p><p>x {}^{2}  + y {}^{2}  - 10x - 2y + 26 = x {}^{2}  + y {}^{2}  + 6x + 14y + 58 \\  \bf \: x {}^{2} </p><p></p><p> + y {}^{2} + 6x + 14y + 58 = x {}^{2}   + y {}^{2} - 14x + 2y + 5 0\end{cases}</p><p> \\  \\

 \bf \: •Now \: x²+y²-10x-2y+26=x²+y²+6x+14y+58 \\  \\

 \implies \bf16 x + 16y =  - 32 \\  \\

 \implies \bf \: x + y =  - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ....(1) \\  \\

 \bf •And  \: x²+y²+6x+14y+58=x²+y²-14x+2y+50 \\  \\

 \implies \bf \: 20x + 12y =  - 8 \\  \\

 \bf \implies \: 5x + 3y =  - 2  \:  \:  \:  \:  \:  \:  \:  \: ....(2)\\  \\

 \bf•Multiplying (1) \: by \: 5 ,we \: get \\  \\

 \bf •5x+5y=-10........(3) \\  \\

 \bf •Subtracting (2) \: from \: (3) \: we \: get \\  \\

 \bf \implies \cancel{5x} + 5y -  \cancel{5x} - 3y =  - 10 + 2 \\  \\

 \implies \bf 2y =  - 8 \\  \\

 \bf \implies y =  \frac {   - \cancel{8} \: 4}{ \cancel{2}}  \\  \\

  \boxed{ \bf\therefore \: y =  - 4 } \\  \\

 \bf •Now  \: putting  \: the \: value \: of \underline{y=-4} \: in  \:  (1) \\

  \implies \bf \: x  + ( - 4) =  - 2  \\  \\

 \boxed{ \bf \therefore \: x = 2} \\  \\

Hence,the required point is P(2,-4)

•Drag your screen to view full answer》》

Similar questions
Chemistry, 3 months ago