Math, asked by roshni280, 1 year ago

find the coordinates of the point of the intersection of the medians of the triangle ABC; given A(-2,-3), B(6,7) and C(4,1)

Thanx ❤️​

Answers

Answered by Anonymous
84

Answer

Coordinates of centriod is 8/3 and 5/3

\rule{100}2

Explanation

Given:-

  • ABC is a triangle.
  • Given that A(-2, -3), B(6, 7) and C(4, 1)

Find:-

Coordinates of the point if intersection of the medians of the triangle ABC.

Solution:-

We know that -

Centroid : Intersection of medians of triangle.

We can find coordinates of centroid, using formula -

For x-axis

\Rightarrow\:\sf\bigg( \dfrac{ x_1 \:  +   \:  x_2\: + \:  x_3   }{3}  \bigg)

For y-axis

\Rightarrow\:\sf\bigg( \dfrac{ y_1 \:  +   \:  y_2\: + \:  y_3   }{3}  \bigg)

We have -

  • \sf{x_1} = -2
  • \sf{x_2} = 6
  • \sf{x_3} = 4

  • \sf{y_1} = -3
  • \sf{y_2} = 7
  • \sf{y_3} = 1

Put these values in above formula

First for x-axis

\implies\:\sf\bigg( \dfrac{ -2\:  +   \: 6\: + \: 4   }{3}  \bigg)

\implies\:\sf\bigg( \dfrac{ -2\:  +   \: 10   }{3}  \bigg)

\implies\:\sf\bigg( \dfrac{ 8  }{3}  \bigg)

For y-axis

\implies\:\sf\bigg( \dfrac{ -3\:  +   \: 7\: + \: 1  }{3}  \bigg)

\implies\:\sf\bigg( \dfrac{ -3\:  +   \: 8   }{3}  \bigg)

\implies\:\sf\bigg( \dfrac{ 5   }{3}  \bigg)

•°• Coordinates of the centroid is \sf\bigg( \dfrac{8}{3}, \:\dfrac{ 5   }{3}  \bigg)

Attachments:

StarrySoul: Amazing!♡
Anonymous: Thank you❤
Answered by Anonymous
92

Question : Find the coordinates of the point of the intersection of the medians of the triangle ABC; given A(-2, -3), B(6, 7)and C(4, 1).

______________________________

Solution : Here, we have (x_1= -2,\:y_1=- 3),(x_2=6,\:y_2 =  7)</p><p>and\\(x_3=4,\:y_3=1)

\implies Let P(x, y) be the centroid of the triangle ABC then,

\implies x = \frac{x_1+x_2+x_3}{3}=\frac{(-2) +6+4}{3}= \frac{-2+10}{3}=\frac{8}{3}

\implies y = \frac{y_1+y_2+y_3}{3}=\frac{(-3) +7+1}{3}= \frac{-3+8}{3}=\frac{5}{3}

\implies \therefore The coordinates of the centroid P of the triangle ABC are (\frac{8}{3}, \frac{5}{3})

Thus, the coordinates of the point of intersection of the medians of triangle is are (\frac{8}{3}, \frac{5}{3}).


StarrySoul: Well Done Sushiiiiiii xD
Similar questions