Math, asked by vmanisundar7531, 11 months ago

Find the coordinates of the point of trisection of the line segment joining (1,-2) and (-3,4).

Answers

Answered by Anonymous
8

yr answer .....do in the same way ,u have to change the values of points only ....

I have taken (4,-1) and (-2,-3)

Attachments:
Answered by rukumanikumaran
2

 

 \mathbb{HOPE \: THIS \: HELPS \:U }  

\huge{\mathcal{\pink{A}\green{N}\red{S}\blue{W} {E}\green{R}}

we will use this formula \frac{m_1x_2+m_2x_1}{m_1+m_2} , \frac{m_1y_2+m_2y_1}{m_1+m_2}

D divides line segment ab into ratio of 1:2 m_1=1,m_2= 2 x_1=1,x_2= -3 y_1=-2,y_2= 4  

D = \frac{1(-3)+2(1)}{1+2} , \frac{1(4)+2(-2)}{1+2}

D = \frac{-3+2 }{3} , \frac{4-4}{3}

D = \frac{-1 }{3} , \frac{0}{3}

D = \frac{-1 }{3} , 0

D coordinates are \frac{-1 }{3} , 0

C divides line segment ab into ration of 2:1 m_1=2,m_2= 1 x_1=1,x_2= -3 y_1=-2,y_2= 4  

c = \frac{2(-3)+1(1)}{1+2} , \frac{2(4)+1(-2)}{1+2}

c = \frac{-6+1 }{3} , \frac{8-2}{3}

c = \frac{-5 }{3} , \frac{6}{3}

c = \frac{-5 }{3} , 2

c coordinates are \frac{-1 }{3} , 2

Attachments:
Similar questions