Math, asked by Anonymous, 6 days ago

Find the coordinates of the point on the curve y² =2x³ the tangent at which is perpendicular to the line 4x − 3y + 2 = 0.​

Answers

Answered by Ariyuu
3

 \sf 4x - 3y + 2 = 0 \\ \\  \bf or  \\ \\  \sf 3y = 4x + 2 \\ \\ \bf or \\ \\ \sf y =  \dfrac{4}{3} x +  \dfrac{2}{3}

 \bf Hence \: slope \: of \: the \:tangent \: will \: be  \\ \sf   : \implies  \purple{\dfrac{ - 3}{4}}

Now,

  \sf :  \implies \dfrac{dy}{dx}  =  \dfrac{ - 3}{4}

 \sf  : \implies y =   \frac{ + }{ }  \sqrt{2} . {x}^{ \dfrac{3}{2}}

Hence,

 \sf  : \implies \dfrac{dy}{dx}

 \sf :  \implies  \frac{ + }{}  \sqrt{2} . \dfrac{3}{2} . {x}^{ \dfrac{1}{2} }

 \sf :  \implies  \dfrac{ - 3}{4}  \\ \\  \sf or  \\ \sf : \implies  -  \sqrt{2}. \dfrac{3}{2}. {x}^{ \dfrac{1}{2} }   \\ \\  \\   \sf : \implies  \frac{ - 3}{4}  \\ \\   \sf or \\   \sf  : \implies 2 \sqrt{2} . {x}^{ \dfrac{1}{2} }   \\ \\   \sf  : \implies 1 \\  \\  \sf or  \\  \sf  : \implies x =  \dfrac{1}{8}

Hence,

 \sf :  \implies y =  -  \sqrt{2} . {x}^{ \dfrac{3}{2} }  \\ \\  \\  \sf :  \implies  -  \sqrt{2} . \frac{1}{16 \sqrt{2} } \\   \\ \\  \sf  : \implies  -  \frac{1}{16}

Therefore,

The co-ordinates are

 \bf  : \implies \blue{( \dfrac{1}{8} \dfrac{ - 1}{16}  )}

Similar questions