Math, asked by kdev90909, 8 months ago

find the coordinates of the point on x axis which divides the line segment joinig the points (2,3) and (5,-6) in the ratio 1:2​

Answers

Answered by Anonymous
1

\bf\huge\blue{\underline{\underline{ Question : }}}

Find the coordinates of the point on x axis which divides the line segment joinig the points (2,3) and (5,-6) in the ratio 1:2

\bf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • The line segment joining (2,−3) and (5,6) is divided by x-axis in the ratio 1:2.

To find,

  • The point on X - axis.

Let,

The point on X - axis be P(x, y).

By using Section formula, we get the value of the point P.

\boxed{\rm{\red{  P(x, y) =\Bigg( \cfrac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}} , \cfrac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}}\Bigg) }}}

  • x1 = 2 ; y1 = -3
  • x2 = 5 ; y2 = 6
  • m1 = 1 ; m2 = 2

\sf\:\implies  P(x, y) = \Bigg( \cfrac{ 1(5)+2(2)}{1+2} , \cfrac{1(6)+2(-3)}{1+2} \Bigg)

\sf\:\implies  P(x, y) = \Bigg( \cfrac{5+4}{3} , \cfrac{6-6}{3} \Bigg)

\sf\:\implies  P(x, y) = \Bigg( \cancel{\cfrac{9}{3}} \:  \:  \:  , \cfrac{0}{3} \Bigg)

\sf\:\implies  P(x, y) = (3,0)

\underline{\boxed{\rm{\purple{\therefore The\:point\:is\:P(3,0)}}}}\:\orange{\bigstar}

Similar questions