Math, asked by visweshshakthivel38, 11 months ago


Find the coordinates of the point which divides the join of A(-1, 7) and B(4, -3) in the ratio 2 : 3.​

Answers

Answered by BrainlyConqueror0901
16

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Coordinate\:of\:p=(1,3)}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }} \\  \tt:  \implies Coordinate \: of  \: a = ( - 1,7) \\  \\ \tt:  \implies Coordinate \: of  \: b= (4, - 3) \\  \\  \tt:  \implies Ratio\:(m :n)  = 2 : 3 \\  \\ \red{\underline \bold{To \: Find: }} \\  \tt:  \implies Coordinate \: of \: p = (x,y)

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies x =  \frac{m x_{2}  + n x_{1}}{m + n}  \\  \\  \tt: \implies x =  \frac{2 \times4 + 3 \times  - 1 }{2 + 3}   \\  \\  \tt:  \implies x =  \frac{8 - 3}{5}  \\  \\  \tt:  \implies x =  \frac{5}{5} \\  \\   \green{\tt:   \implies x = 1} \\  \\  \bold{As \: we \: know \: that}  \\ \tt:  \implies y =  \frac{m y_{2}  + n y_{1}}{m + n}  \\  \\  \tt: \implies y =  \frac{2 \times - 3+ 3 \times  7 }{ 2 + 3}   \\  \\  \tt:  \implies y=  \frac{ - 6 + 21}{5}  \\  \\  \tt:  \implies y =  \frac{15}{5} \\  \\   \green{\tt:   \implies y = 3} \\  \\   \green{\tt \therefore Coordinate \: of \: p = (1,3)}

Answered by Anonymous
12

\huge\bold\green{Question}

Find the coordinates of the point which divides the join of A(-1, 7) and B(4, -3) in the ratio 2 : 3.

\huge\bold\green{Answer}

Acc. to the question we have given :-

°•° Given Coordinateof a = (−1,7)

°•° Given Coordinate of b = (4,−3)

°•° Given Ratio (m:n) = 2:3

So , according to the question we have to find out the

Coordinate of “ p ”

let the Coordinate of “ p ” will he ( x , y )

So , as said in question let's find out the points

\begin{lgathered}\bold{So \: we \: know \: that\: the : section\: formula\:is} \\ \sf x = \frac{m x_{2} + n x_{1}}{m + n} \\ \\ \sf x = \frac{2 \times4 + 3 \times - 1 }{2 + 3} \\ \\ \sf x = \frac{8 - 3}{5} \\ \\ \sf x = \cancel\frac{5}{5} \\ \\ \sf x = 1 \\  \\ \sf y = \frac{m y_{2} + n y_{1}}{m + n} \\ \\ \sf y = \frac{2 \times - 3+ 3 \times 7 }{ 2 + 3} \\ \\ \sf y= \frac{ - 6 + 21}{5} \\ \\ \sf  y = \frac{15}{5} \\ \\ \sf  y = 3 \\ \\ \implies\sf {Hence Coordinate \: of \: p = (1,3)}\end{lgathered}

So, the required coordinate of p is ( 1 ,3 )

Similar questions