Math, asked by ankitabadyal90, 7 months ago

find the coordinates of the point which divides the join of (-1 7) and (4 -3) in the ratio 2:3​

Answers

Answered by ajay123jatus
0

Answer:

X= 3(-1)+2(4)/(2+3)=(-3+8)/5=5/5=1

Y=3(7)+2(-3)/(2+3)=15/5=3

(1,3) is the solution

Answered by ImperialGladiator
0

Answer:

Step-by-step explanation:

Using section formula :

  \sf \:x, \: y  =  \frac{{mx}_{2} + {nx}_{1}}{m + n} \frac{{my}_{2} + {ny}_{1}}{m + n} \\

Where,

m = 2

n = 3

\sf {x}_{1} = -1

\sf {x}_{2} = 4

\sf {y}_{1} =  7

\sf {y}_{2} = (-3)

Substitution of the values :

 \longmapsto \sf \:x, \: y  =  \frac{{mx}_{2} + {nx}_{1}}{m + n}, \frac{{my}_{2} + {ny}_{1}}{m + n} \\  \longmapsto \sf \:x, \: y  =  \frac{8 + ( - 3)}{5} , \frac{ - 6 + 21}{5}  \\  \sf \: \longmapsto x, \: y  =  \frac{5}{5} ,  \frac{15}{5}  \\  \sf \:  \longmapsto x, \: y  =( 1, 3 )\: ans.

Similar questions