Math, asked by mrunalpatil214, 4 months ago

Find the coordinates of the point which divides the join of (-1 , 7) and (4 , -3) in the ratio 2 : 3.​

Answers

Answered by Ataraxia
11

To Find :-

Coordinates of the point which divides the join of ( -1 , 7 ) and ( 4 , -3 ) in the ratio 2 : 3.

Solution :-

We can find the coordinates of the point be using section formula.

According to section formula :-

\bullet \bf \ x \ coordinate = \dfrac{mx_2+nx_1}{m+n} \\\\\bullet \ y \ coordinate = \dfrac{my_2+ny_1}{m+n}

Here :-

\bullet \sf \ x_1 = 1 \ , x_2 = 4 \\\\\bullet \ y_1 = 7 \ , \ y_2 = -3 \\\\\bullet \ m = 2 \ , n = 3

x coordinate :-

\longrightarrow \sf \dfrac{(2 \times 4)+( 3 \times -1 )}{2+3}\\\\\longrightarrow \dfrac{8-3}{5}\\\\\longrightarrow \dfrac{5}{5} \\\\\longrightarrow \bf 1

y coordinate :-

\longrightarrow \sf \dfrac{(2 \times -3) +( 3 \times 7 )}{2+3}\\\\\longrightarrow \dfrac{-6+21}{5} \\\\\longrightarrow \dfrac{15}{5} \\\\\longrightarrow \bf 3

Coordinates of the point = ( 1 , 3 )

Answered by VinCus
54

°Given :

  • Coordinate of a = (-1 ,7)

  • Coordinate of b = (4, -3)

  • Ratio (m : n) = 2 : 3

°To Find :

  • Coordinate of p = (x , y)

°Finding x..

°Formula Used,

 \\ \bullet{ \underline{ \boxed{ \sf {\: x =  \frac{mx_2 \:  + nx_1 }{m + n} }}}}

  \\  \bullet\sf \: x =  \frac{2 \times 4 + 3 \times  - 1}{2 + 3}

  \\\bullet \sf \: x =  \frac{8 + 3}{5}

  \\\bullet  \sf \: x =  \frac{5}{5}

  \\\bullet \sf \: x = 1

°Finding y...

°Formula Used,

 \\\bullet { \underline{ \boxed{ \sf{y =  \frac{my_2 + ny_1}{m + n} }}}}

 \\\bullet  \sf \: y =  \frac{2 \times  - 3 + 3 \times 7}{2 + 3}

 \\\bullet \sf \:  y = \frac{ - 6 + 21}{5}

 \\\bullet  \sf \: y =  \frac{15}{5}

 \\  \bullet\sf \: y = 3

Coordinate of p is (1 , 3)...

Similar questions