Math, asked by PRATHAMDV141, 1 year ago

Find the coordinates of the point which divides the join of ( 1, 7) and (4, 3) in the ratio 2 : 3. Let the ...​

Answers

Answered by siri4399
2

HERE IS YOUR ANSWER

Let P(x, y) be the required point.

Using the section formula. We obtain,

= m1x2 + m2x1 / m1 + m2 ,

m1y2 + m2y1/ m1m2

x = 2×4 + 3× (-1)/ 2+3

= 8-3 / 5

= 5/5

= 1

y = 2× (-3) + 3×7 / 2+3

= -6 + 21 / 5

= 15 /5

= 3

Therefore the point is (1, 3)

HOPE THIS HELPS YOU☺️☺️

Plz mark as brainliest

Answered by ImperialGladiator
0

Step-by-step explanation:

Using section formula :

  \sf \:x, \: y  =  \frac{{mx}_{2} + {nx}_{1}}{m + n} \frac{{my}_{2} + {ny}_{1}}{m + n} \\

Where,

m = 2

n = 3

\sf {x}_{1} = -1

\sf {x}_{2} = 4

\sf {y}_{1} =  7

\sf {y}_{2} = (-3)

Substitution of the values :

 \longmapsto \sf \:x, \: y  =  \frac{{mx}_{2} + {nx}_{1}}{m + n}, \frac{{my}_{2} + {ny}_{1}}{m + n} \\  \longmapsto \sf \:x, \: y  =  \frac{8 + ( - 3)}{5} , \frac{ - 6 + 21}{5}  \\  \sf \: \longmapsto x, \: y  =  \frac{5}{5} ,  \frac{15}{5}  \\  \sf \:  \longmapsto x, \: y  =( 1, 3 )\: ans.

Similar questions