Math, asked by CHETANbera9941, 1 year ago

Find the coordinates of the point which divides the line joining the points (-1,7) and (4,-3) in the ratio 2:3

Answers

Answered by chainsinghpawar58
6

Answer:

Step-by-step explanation:

Attachments:
Answered by StormEyes
1

Solution!!

Let P = (x, y) divide the lines A(x₁, y₁) and B(x₂, y₂) in the ratio m:n.

Here,

x₁ = -1

y₁ = 7

x₂ = 4

y₂ = -3

m = 2

n = 3

Use the section formula.

\sf{(x,\: y)=\left(\dfrac{mx_{2}+nx_{1}}{m+n},\: \dfrac{my_{2}+ny_{1}}{m+n}\right)}

\sf{(x,\: y)=\left(\dfrac{2(4)+3(-1)}{2+3},\: \dfrac{2(-3)+3(7)}{2+3}\right)}

\sf{(x,\: y)=\left(\dfrac{8-3}{5},\: \dfrac{-6+21}{5}\right)}

\sf{(x,\: y)=\left(\dfrac{5}{5},\: \dfrac{15}{5}\right)}

\sf{(x,\: y)=\left(1,\: 3\right)}

Hence, the coordinates of point P are (1, 3).

Additional information:-

External Section Formula ↓

\sf{(x,\: y)=\left(\dfrac{mx_{2}-nx_{1}}{m-n},\: \dfrac{my_{2}-ny_{1}}{m-n}\right)}

Similar questions