Math, asked by mdrustamcisf67, 7 months ago

Find the coordinates of the point which divides the line joining the points (– 1, 7) and (4 ,– 3)

Internally in the ratio 2:3​

Answers

Answered by VishnuPriya2801
104

Answer:-

Given:

A point divides the line segment joining the points ( - 1 , 7) & (4 , - 3) internally in the ratio 2 : 3.

Using section formula;

i.e., The co - ordinates of a point which divides the line segment joining the points (x₁ , y₁) & (x₂ , y₂) internally in the ratio m : n are :

(x , y) = [ mx₂ + nx₁ / m + n , my₂ + ny₁ / m + n ]

Let,

  • x₁ = - 1

  • x₂ = 4

  • y₁ = 7

  • y₂ = - 3

  • m = 2

  • n = 3

Hence,

⟶ ( x , y ) = [ { (2)(4) + (3)( - 1) }/ 2 + 3 , { (2)(- 3) + (3)(7) } / 2 + 3 ]

⟶ (x , y) = [ (8 - 3)/5 , (- 6 + 21)/5 ]

⟶ (x , y) = [ 5/5 , 15/5 ]

⟶ (x , y) = (1 , 3)

Therefore, the co - ordinates of the point are (1 , 3).


mddilshad11ab: perfect:-)
Answered by Anonymous
370

Answer:

To solve our given problem we will use section formula :]

  • Section Formula states that, when a point divides a line segment internally in the ratio m:n, So the coordinates are :]

\tiny: \implies (x,y) =  \bigg \lgroup x =  \frac{m. {x}_{2} +n. {x}_{1} }{m + n} ,y=  \frac{m. {y}_{2} +n. {y}_{1} }{m + n} \bigg \rgroup \\  \\  \\

Let

  • (-1 , 7) = (x₁ , y₁)

  • (4 , -3) = (x₂ , y₂)

  • m = 2

  • n = 3

Upon Substituting coordinates of our given points in section Formula we get :]

\tiny: \implies (x,y) =  \bigg \lgroup x =  \frac{2 \times 4 +3 \times  - 1 }{2 + 3} ,y=  \frac{2 \times  - 3 +3 \times 7}{2 + 3} \bigg \rgroup \\  \\  \\

\tiny: \implies (x,y) =  \bigg \lgroup x =  \frac{8  - 3 }{2 + 3} ,y=  \frac{ - 6 +21}{2 + 3} \bigg \rgroup \\  \\  \\

\tiny: \implies (x,y) =  \bigg \lgroup x =  \frac{5 }{5} ,y=  \frac{15}{5} \bigg \rgroup \\  \\  \\

\tiny: \implies (x,y) =  \bigg \lgroup x =  1,y=  3 \bigg \rgroup \\  \\  \\


mddilshad11ab: Awesome:-)
Similar questions