Math, asked by jaycanvin8, 5 months ago

find the coordinates of the point which divides the line segment joining the Points (3, 5) and (8, 10) internally in the ratio 3:2​

Answers

Answered by rockstar2019
9

 \mathtt{Answer =  (5,7)}

step-by-step explanation:

#Using the section formula,

 \tiny{if \:  a  \: point  \: (x,y) \:  divides \:  the  \: line \:  joining \:  the}\\  \tiny{points \: (x_{1},y_{1})} \: and \: (x_{2},y_{2}) \: internally \: in \: the \: ratio \: m: n,

 \small{then, \: (x,y) = ( \frac{mx_{2} + nx_{1}}{m + n}, \frac{my_{2} + ny_{1}}{m + n}) }

 \scriptsize{Substituting \:   (x _1,y _ 1)  \:  = (3,5)} \\ \scriptsize{and(x_2,y_2) = (8,10)} \\  \scriptsize{and \: m = 2,n = 3 \:  in \: the \: section \: formula.} \\

 \scriptsize{we \: get,the \: point ( \frac{2(8) + 3(3)}{2 + 3},\frac{2(10) + 3(5)}{2 + 3})}=(5,7)

  • ᴍʀᴋ. ᴛʜᴀɴᴋs ᴀɴᴅ ʙʀᴀɪɴʟɪsᴛ
Similar questions